{"created":"2023-05-15T12:30:57.531843+00:00","id":526,"links":{},"metadata":{"_buckets":{"deposit":"6ffff71a-de43-4f28-982b-efbe14a92a0f"},"_deposit":{"created_by":2,"id":"526","owners":[2],"pid":{"revision_id":0,"type":"depid","value":"526"},"status":"published"},"_oai":{"id":"oai:fit.repo.nii.ac.jp:00000526","sets":["256:257:312"]},"author_link":["2578","2802","2803"],"item_3_alternative_title_23":{"attribute_name":"タイトル(ヨミ)","attribute_value_mlt":[{"subitem_alternative_title":"キョクダイ ヘイメンテキ グラフ ノ ドウサイズ ノ 2ツ ノ キ ト レンケツ セイブン ニ タイスル コウセイ カノウセイ ニ カンスル コウサツ"}]},"item_3_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2019-09","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"50","bibliographicPageStart":"31","bibliographicVolumeNumber":"52","bibliographic_titles":[{"bibliographic_title":"福岡工業大学研究論集"}]}]},"item_3_description_17":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_3_description_47":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"subitem_description":"論文(Article)","subitem_description_type":"Other"}]},"item_3_description_5":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"For any integer n≧3, let G be the maximal planar graph with n vertices and m=3n−6 edges, and, T1 and T2 be any two trees with n−1 vertices and n−2 edges each other. If G contains T1 and T2 then we define the following subgraphs G′ and G″ of G as follows. Let G′ be a graph obtained by deleting edges of T1 and T2. Furthermore, let G″ be a graph obtained by deleting isolate vertices of G′. In this paper, we consider the problem to determine whether there is a maximal planar graph G such that T1 and T2 are contained in G and G″ is simple and connected subgraph with n−2 edges obtained from G, in the 3≦n≦7 case. As a conclusion, we can obtain that the answer of the problem is “yes”. In this paper, we discuss the detail of our consideration as the following ⑴ and ⑵. ⑴ If n=7, T1 and T2 are star type trees as table 3.8 described below, and G is the maximal planar with 7 vertices and 15 edges as table 4.6 described below, then G can not contain T1 and T2 in the same time. ⑵ Otherwise, G can contain T1 and T2, and G″ which is simple and connected subgraph with n−2 edges obtained from G.","subitem_description_type":"Other"}]},"item_3_full_name_2":{"attribute_name":"著者(ヨミ)","attribute_value_mlt":[{"nameIdentifiers":[{"nameIdentifier":"2802","nameIdentifierScheme":"WEKO"}],"names":[{"name":"タカハシ, マサヤ"}]}]},"item_3_full_name_3":{"attribute_name":"別言語の著者","attribute_value_mlt":[{"nameIdentifiers":[{"nameIdentifier":"2803","nameIdentifierScheme":"WEKO"}],"names":[{"name":"TAKAHASHI, Masaya"}]}]},"item_3_publisher_37":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"福岡工業大学"}]},"item_3_source_id_7":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"02876620","subitem_source_identifier_type":"ISSN"}]},"item_3_text_18":{"attribute_name":"形態","attribute_value_mlt":[{"subitem_text_value":"1607627 bytes"}]},"item_3_text_38":{"attribute_name":"出版者(ヨミ)","attribute_value_mlt":[{"subitem_text_value":"フクオカ コウギョウ ダイガク"}]},"item_3_text_39":{"attribute_name":"別言語の出版者","attribute_value_mlt":[{"subitem_text_value":"Fukuoka Institute of Technology"}]},"item_3_text_48":{"attribute_name":"資源タイプ・ローカル","attribute_value_mlt":[{"subitem_text_value":"紀要論文"}]},"item_3_text_49":{"attribute_name":"資源タイプ・NII","attribute_value_mlt":[{"subitem_text_value":"Departmental Bulletin Paper"}]},"item_3_text_50":{"attribute_name":"資源タイプ・DCMI","attribute_value_mlt":[{"subitem_text_value":"text"}]},"item_3_text_51":{"attribute_name":"資源タイプ・ローカル表示コード","attribute_value_mlt":[{"subitem_text_value":"01"}]},"item_3_version_type_19":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"高橋, 昌也"}],"nameIdentifiers":[{"nameIdentifier":"2578","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2020-09-14"}],"displaytype":"detail","filename":"11478-1367_p31.pdf","filesize":[{"value":"1.6 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"11478-1367_p31.pdf","url":"https://fit.repo.nii.ac.jp/record/526/files/11478-1367_p31.pdf"},"version_id":"f19a8750-7ed5-49d6-b31b-93c7a72c38e8"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"graph theory","subitem_subject_scheme":"Other"},{"subitem_subject":"maximal planar graph","subitem_subject_scheme":"Other"},{"subitem_subject":"tree","subitem_subject_scheme":"Other"},{"subitem_subject":"connected component","subitem_subject_scheme":"Other"},{"subitem_subject":"graph theory","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"maximal planar graph","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"tree","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"connected component","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"極大平面的グラフの同サイズの2つの木と連結成分に対する構成可能性に関する考察","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"極大平面的グラフの同サイズの2つの木と連結成分に対する構成可能性に関する考察"},{"subitem_title":"A consideration of a maximal planar graph constructed from two same size trees","subitem_title_language":"en"}]},"item_type_id":"3","owner":"2","path":["312"],"pubdate":{"attribute_name":"公開日","attribute_value":"2019-10-04"},"publish_date":"2019-10-04","publish_status":"0","recid":"526","relation_version_is_last":true,"title":["極大平面的グラフの同サイズの2つの木と連結成分に対する構成可能性に関する考察"],"weko_creator_id":"2","weko_shared_id":2},"updated":"2023-07-04T02:03:49.672785+00:00"}