
 

 

 

どこでも AI に向けた機械学習システムの 

ビットエネルギー効率向上 

知能情報システム工学専攻 

席 家禎 

 

Improving Bit Energy Efficiency of Machine Learning 

Systems Towards an Era of AI-Everywhere 

Intelligent Information System Engineering 

Xi, Jiazhen 

 

 

 

 

 

 





I 

 

どこでも AI に向けた機械学習システムの 

ビットエネルギー効率向上 

知能情報システム工学専攻 

セキ カテイ 

 

要旨 

近年のディープラーニング型ニューラルネットワーク(NN)の機械学習システムは

より複雑な画像の認識精度を畳み込み層をより深くして向上させている。結果、パラ

メータ数や乗加算計算回数、計算対象のデータの総移動距離/時間の増加に伴う急激な

消費電力増加の課題が顕在化している。さらに今後、クラウドだけでなくセンサー付

近にも AI を埋め込む AI-IoT（どこでも AI）のシステムの実現を考えた場合、今とは

桁違いにエネルギー効率の高い機械学習システムの実現なくしてはその夢はかなえ

られない。本論文ではその目標の深刻な障害となる課題を解決する技術の提案と効果、

残された課題について、以下の 2 つの提案技術から論ずる： 

1) Memory回路にデータ記憶機能だけでなく乗加算計算（MAC）の機能も Dual Role

として兼務させる In-Memory Computing 技術でデータ移動に起因するエネルギー削減

手法を論じ、メモリアレーのコラム数削減手法の提案とその効果(16%削減) 、課題を

論ずる。 

さらに、 

2) MAC 計算対象データの表現ビット数を従来の 32bit 浮動小数点でなく大胆に

1bit (Binary Neural Network: BNN) に削減することで、Bit 演算のエネルギー効率を桁

で向上させることを目的とした低精度表現NN機械学習モデルの精度や安定性の問題

を解決する手法の提案とその効果(CIFAR-10 データセットでは 15%精度向上と 54%の

ばらつき削減) 、と課題を論ずる。 
 

第１章では 1bit を含む低精度表現型 NN 機械学習モデル、BNN 機械学習の概念と目

的を説明し、従来の BNN が抱える課題を明らかにし本論文の背景と動機を明らかに

する。 

第 2 章では従来の In-Memory 技術が微細化や低電圧動作に伴う MAC 演算回路特性

の非線形性のために生ずるモデル誤差の解決のために導入していたアンサンブル学

習の副作用である面積、消費電力課題を解決する手法を提案する。 

第 3 章では従来の低精度表現型 NN 機械学習モデルが抱えるビット表現力の低下に

よる精度劣化と不安定な学習状態を解決する手法として、注目する層にのみバギング

学習を適用し、BNN での表現力低下を抑制し、従来の BNN 学習において課題であっ
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たトレーニング曲線の大きなふらつきを抑制する手法を提案する。又、その効果を汎

用的に評価するために広範囲に異なるNN機械学習モデルのネットワーク構成に適用

した場合、あるいは CIFAR-10 以外のデータセットに適用した場合の詳細な実験結果

を取得し、その効果を汎用的に議論する。 

第４章では、BNN 学習の不安定性の課題をさらに掘り下げ、いきなり１ビット化せ

ずに段階的に徐々に 1 ビット化するなどの緩和プロセスを提案し、別の視点から提案

されているバッチ正規化プロセスやAdamなどのオプティマイザーに対する依存性な

どを明らかにしながら提案技術の効果を汎用的に議論する。 

第 5 章では本論文の主要な結果を要約する。 

 

 

 

西暦 2021 年 5 月 31 日 
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Abstract 

The power consumption of neural networks has intolerably increased with the ever-increasing 

amount of number of MAC (Multiply Accumulate) operations and data movements for 

computing the machine learning models. Thus, the computing performance for the models can’t 

be increased anymore under the power constraint systems until a much higher energy-efficient 

model could be developed. To address such a challenge, some trials with using in-memory 

computing and binary neural networks (BNN), have drawn much attention in the power-

constraint fields like the internet of things (IoT). However, the 1-Bit training process of 

conventional methods also needs much training memory/time at a cost of the unstable training 

process and the loss of accuracy. This work proposed (1) A column reduction technique for the 

in-memory machine learning classifier. The proposed method can achieve similar accuracy as 

original full precision with MNIST dataset and with much lower computing memory (with 16% 

columns reduced), compared to conventional work. (2) Layer-wise ensemble technique for 

BNN to improve the performance of low precision networks via employing the ensemble 

learning technique which reduces the error and its standard deviation by 15% and 54% on the 

CIFAR-10 dataset, respectively, compared to the BNN serving as a baseline. (3) Training with 

the relaxation of both weights and activations for binary neural networks to alleviate the 

variance by the conventional BNN training process (reduced by 1.71%) with the experiments 

of various cases including different optimizers and with or without batch normalization.  

  The outline of this thesis is as follows. Chapter 1 presents the concept of low precision 

machine learning and the purpose of this work. Chapter 2 introduces the conventional in-

memory boosting classifier and then proposes a column reduction technique to improve the bit 

energy efficiency of the in-memory boosting classifier followed by the comparison to the 

conventional technique. Chapter 3 presents the low precision neural network and its instability 

issue of conventional works and then proposes a layer-wise ensemble method for the binary 

neural network (BNN), followed by the experiments to compare the conventional methods and 



IV 

 

the proposed one the metrics of the stability and accuracy of the network. Chapter 4 presents 

the conventional training process of BNN with relaxation technique and proposes a new training 

procedure that employs relaxations to both low precision weights and activations, followed by 

the comparisons between the proposed method and conventional training process in various 

cases of the different optimizers and with trained or fixed batch normalization. Chapter 5 

summarizes this thesis. 

 

May 31, 2021  
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Chapter 1 Introduction 

1.1 Backgrounds 

With the various sensors being developed and applied into reality, the target signals in the 

embedding sensing systems are being more and more complex, such that traditional fixed 

processing and rule-based algorithms are becoming more difficult to design for each target 

signal separately. To address such a problem, the data-driven models, enabling training models 

with various kinds of data, are playing an important role in the applications with signals too 

complex to analyze, especially at the computers of centralized cloud servers. With the recent 

developments of artificial intelligence (AI) algorithms as the core of data-driven models, the 

accuracy performance of the system has made great progress in almost everywhere of modern 

life applications like face recognition, speech recognition, self-driving cars, and various Internet 

of Things (IoT) systems (see Fig. 1.1).  

However, various sensors widen the features of systems, which conflicts with another 

important need for the low energy cost of such applications. What’s more, with more complex 

AI-based algorithms being developed, the problem of energy cost and system power is 

Fig. 1.1 The applications powered by AI algorithms 
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becoming much serious. This somehow restricts the employment of data-driven models and 

algorithms in such embedding systems whose energy/resource is limited. The complex data 

generated by various sensors of the devices combined with the extreme energy limitations in 

the device side yields the deployment of AI not only at the cloud side but also the near-device 

(edge) side, which is exactly the concept of 'AI-everywhere'.  

Faced with the conflict of energy cost and system performance, various embedding hardware 

architectures are being developed and improved. One of the most focused trends is the concept 

of 'Edge Computing', instead of one centralized cloud (see following Fig. 1.2 which shows the 

positions of 'edge' and 'cloud' in the era of AI-everywhere).  

The conventional systems with separate data storage and calculation module are still with 

energy cost at least, which is the cost of data accesses and communications. The following Table 

1 shows the energy of operations in a 45nm CMOS at 0.9V. From the table, it is shown that the 

energy of the same kind of operation (add/multiply/read) among the numbers in different bit-

width varies in a great range. Thus, the key to reducing the energy cost is to use the 'cheap' 

operations (integer add/multiply) instead of 'expensive' operations (float add/multiply), which 

is exactly to improve the bit-energy efficiency. 

To improve the bit-energy efficiency, an ‘in-memory computing’ system architecture, which 

integrates the computing model and memory storage together into memory cells, was 

highlighted recently (M. Kang, 2014)[1]. By such a computing/memory combined structure, 

with the number of data accesses reduced largely, the whole energy cost is also reduced. In 

addition, with parallel processing enabled, such in-memory systems can achieve higher 

Fig. 1.2 The positions of Edge computing and Cloud computing in the era of AI-everywhere 
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throughput compared to conventional structures, leading to a better processing speed.  

 

Table 1 The energy of operations in a 45nm CMOS at 0.9V 

Operation Energy(pJ) 

Integer ADD (8b) 0.03 

Integer ADD (16b) 0.05 

Integer ADD (32b) 0.1 

Float ADD (16b) 0.4 

Float ADD (32b) 0.9 

Integer MULT (8b) 0.2 

Integer MULT (32b) 3.1 

Float MULT (16b) 1.1 

Float MULT (32b) 3.7 

8KB SRAM READ (32b) 5 

32KB DRAM READ (32b) 640 

With the development of deep learning algorithms, there are also increasing demands of 

reducing the energy of such kinds of models with millions or even billions of parameters. To 

address the above issue, the network quantization techniques were proposed to meet the 

requirements for saving energy and memory cost that is critical in mobile devices and embedded 

systems. The quantization technique allows relaxing the precision requirements of the network 

parameters from the float32 to lower integer precision like 8-bit, 4-bit, 2-bit, and even binary 

(1-bit) while suppressing the accuracy degradation to an allowable level. It can contribute to 

reducing the required computing resources and the memory footprint to complete the training 

within a practical time. 

To summary, the variety of sensors and complex signals call for the employing of data-driven 

models mostly supported by AI algorithms. the scaling complexity of models and algorithms 

achieves better performance at the cloud side but also raises the problems of relatively high 

necessary system power and energy costs for the edge side. Such a problem yields the 

deployment of AI algorithms in both the cloud and edge side, which is 'AI-everywhere'. New 

structures like in-memory computing systems employed combined memory and computing 

models; new techniques like network quantization employed quantized parameters in low 

numerical bit-width. Such techniques largely reduce the energy cost but also make the 

computing accuracy degraded and model training more difficult[2]-[4]. The future target of the 

research to realize 'AI-everywhere' is to improve the bit-energy efficiency which is to hold and 

improve the performance of computing model and reduce the energy cost at the same time. 
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1.2 In-memory computing technique 

In-memory computing was discussed initially early in the 1990s. Restricted by the 

development of memory and computing hardware at that time, however, the in-memory 

computing technique did not make much progress, but numerous novel system architectures 

had inspired the later research as well as developments in related areas. Nowadays, within the 

big data processing area, the concept of in-memory is that by saving data into RAM for 

professional servers rather than hard disk whose read/write speed is relatively limited and 

altering the whole server-side software architecture and the computing model to support parallel 

processes, leading to the breakthrough of the traditional hard disk I/O performance and data-

processing-online. Thus, more efficient usage of data is achieved[5].  

Distinguished from the concept of in-memory computing in the database and big data 

processing area, employing less or even no explicit data accesses so as to reduce energy cost 

and increase the system throughput by in-memory computing technique in the area like 

embedding systems and sensing signal processing is being widely applied. To make it clear, the 

in-memory computing technique is specially referred to as the technique used in the embedding 

system and signal processing areas in this paper’s further discussion.  

In such an area, because of limited resources and strict demand on the energy cost, except for 

the traditional target of high accuracy, the design for data processing and inference system is 

also directing to the exploration of low energy/power cost system design and architectures[6]. 

The following Fig.  shows the concepts of the in-memory computation and conventional 

compute-out-of-memory (out-memory) process. The goal of the process in Fig.  is to recognize 

images in 128 × 128 pixels. The conventional out-memory process first serially accesses data 

from the memory and then performs computation for recognition. During this process, the 

frequent data access makes it cost lots of energy, up to 100 nJ, to recognize one image. However, 

the computation of in-memory processes is performed within the memory (SRAM cells), which 

can avoid frequent access and only costs 1 nJ per image inference. 
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In 1996, Berkeley IRAM project[7] carried on a series of initial experiments for the design of 

general computing system integrating processing unit and DRAM memory on single chip and 

proposed the concept of Intelligent RAM (IRAM), attempting to improve the metrics including 

delay, throughput, power, energy cost and necessary space of the systems by such kind of system 

architecture which can be employed to embedding, portable, desktop or distributed computer 

systems. At the same period of time, Computational RAM(CRAM)[8] and Smart memories[9] 

were also proposed in succession. 

In 2002, H. J. Mattausch et al.[10] proposed the structure of associative memory and achieved 

searching 1-dimension minimum Hamming distance through parallel bit computation. In 

succession, Y. Oike et al.[11] proposed the structure of associative co-processor employing 

hierarchical searching architecture. In 2003, R. Genov et al.[12] proposed the concept of 

Kerneltron, combining the model of support vector machine (SVM) and DRAM arrays, 

achieving a large throughput and high efficiency with the relatively strong generalizing ability 

of SVM. In the same year, based on the demand of data-level parallelism (DIP) processing (in 

contrast of instruction-level parallelism), exited in the area of multimedia and 

telecommunication, C. E. Kozyrakis et al.[13] proposed a new architecture called ‘Vector RAM’ 

(VRAM) with low energy cost and simply designed structure, applicable for the DIP processing 

in the multimedia and telecommunication area. 

The earlier research about in/near-memory-computing included variety of novel designs of 

system architecture and made many signs of progress in the respects like parallel processing 

and reducing system energy cost. In the recent years, with the mass development of integrated 

circuits (IC) especially very large-scale IC (VLSI), the effects of traditional circuit redundant 

designs ensuring hardware resilience and robustness to hardware variability as well as circuits 

non-linear noises are much harder to achieve. Thus, people pay more attention to the fact that 

the hardware variability make the performance of the hardware degraded[14], especially the in-

Fig. 1.3 Comparison between the out-memory process and in-memory process 
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memory computing systems employing a lot of analogy commutating characteristics. And to 

solve such problems, many kinds of solutions are proposed. 

In 2010, V. K. Chippa et al.[15] proposed the ‘scalable effort hardware design’ converting the 

algorithm resilience to efficient hardware realization, achieving a lower energy cost and the 

robustness to the hardware nonlinear noises to some extents. The main idea of the proposed 

design method is that identify the mechanisms that can be approximated and generalized to the 

correct results through calculation in the abstract hardware designs, then extract them to expose 

them as the adjustable knobs in the realization and optimize them through algorithms, reaching 

an approximately available system realization, which is also always nearly correct. During the 

optimization, the cross-level optimizing is critical. Based on this concept of design, they 

realized a low power embedding SVM classifier, achieving 1.2~2.2× lower energy cost with 

no accuracy lost and 2.2~4.1× lower energy cost with least accuracy lost from experiment 

results. The comparison experiments of with/without cross-level optimization showed the 

ability of balancing energy cost and holding accuracy performance with cross-level 

optimization. 

Traditional hardware implementation always includes redundant design in case of hardware 

error. However, with the scaling of memory technology, the space in the memory chip for such 

redundant design is becoming less and harder, which sometimes becomes an instinct limit to 

the performance of hardware systems. To solve such problem, a methodology of building 

inference models adapted with errors and nonlinear noises is proposed and becomes an 

alternative choice to achieve the hardware resilience of system[16]. 

In 2012, N. Verma et al.[17] proposed the concept of ‘Data-Driven Hardware 

Resilience’(DDHR), which explores the method of embedding the inference ability of data-

driven models in the hardware facilities to achieve the system-level resilience of hardware 

platform. With the techniques of pattern recognition, data mining and knowledge discovery 

widely being employed, there are more and more demands on advanced inference ability for 

modern embedding electronic systems. While latest embedding systems analyze business data 

through various kinds of data science methods, these methods should also be used to model the 

data including errors as well as the nonlinear noises coming from the hardware system itself. 

They conveyed several experiments mainly concerned about biomedical signal processing 

systems, showing that the system performance degraded by artificial insert stuck error and 

nonlinear noises can restore to a normal level through DDHR method. 

Biomedical signal processing and analysis is always a challenging problem in the signal 

processing area. One of the difficulties is the necessity of extracting the target from the various 

background signals. For example, the EEG signal of patient suffering epilepsy could be very 

similar and difficult to distinguish compared to the signal of normal sleep from the same patient. 

Therefore, some high ordered signal inference models are needed. The other difficult point is 

that even from the same patient, the pathological signals represented during different period of 
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time could also be different, leading to a demand of customized detecting system but quite 

expensive with traditional biomedical detecting facilities.  

In 2013, K. H. Lee et al.[18] proposed a processor integrated CPU and configurable 

accelerator for many machine-learning functions to analyze different biomedical sensing signals. 

The CPU mainly realized feature extraction of different kinds of biomedical signals. The 

accelerator embedded with implemented SVM classifiers of many kernels including linear, 

polynomial, and radical basis functional kernels enabling the customized adaption of different 

kinds of pathological signals from different patients, reducing the efforts of human experts in 

the initial diagnosis phases. With two EEG/ECG based biomedical sensing applications, the 

writers employed the data-driven modeling framework to analyze the sensing data, restraining 

the errors and hardware variabilities and achieved a relatively high accuracy. The prototype of 

the experiments employed 130nm CMOS circuit and the implemented system achieved the 

necessary energy cost of 273µJ and 124µJ per decision by different applications, reducing the 

cost by 62.4× and 144.7× compared to the traditional single CPU implemented system. The 

other arrhythmia detection application[19] showed the customized analysis cost could be 

reduced by 20× through the proposed method. 

In 2014, M. Kang et al. proposed the concept of ‘Compute memory’, enabling parallel multi-

row accesses and analogy signal processing with the computing model embedded into SRAM 

arrays. The application in the pattern recognition of compute memory relaxed the constraints of 

demands of system on the respective of computational accuracy and linearity. With a 

demonstrated pattern detection system with 256x256 target images using 'compute memory', 

the writers found that with several certain errors included in the analogy signal processing 

circuits, even employing analogy calculations where the accuracy is limited, the performance 

of whole system was not being affected extremely. The results of simulations showed that the 

demonstrated system could reduce about 63% energy cost and probability of detection did not 

decrease when the PSNR>12dB. 

N. Verma et al.[20] proposed ‘Hardware-Driven-Kernel Learning’ (HDKL) and discussed and 

compared it with ‘Data-Driven Hardware Resilience’ (DDHR) in concerned of implementing a 

machine learning inference model within computational resources limited embedding hardware 

systems. The writers thought DDHR used a top-down method, fitting the target data and also 

fitting the variety of nonlinear noises and errors. In contrast, HDKL employed a bottom-up 

method with the target of training a model enabling normalization of new kernel functions 

driven by the strategy of hardware implementation. With regard to the application of machine 

learning inference models in the embedding systems, the writers illustrated several opinions. 

First, the instinct resilience of data-driven models to the calculation errors makes the error 

tolerances possible. Second, with top-down fitting the statistical inference model with error data, 

enough ability of error tolerance can be achieved. Finally, bottom-up artificial designed 

inference kernel functions based on the hardware implementation can explicitly reduce the 
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complexity of the implemented hardware system. 

In 2015, Z. Wang et al.[21] proposed an ‘Error Adaptive Classifier Boosting’ (EACB) 

algorithm. Within the FPGA emulation, a ratio of >2% of all the circuit nodes inserted by the 

random errors and small ratio <1% of circuits nodes being error protected, the system could 

restore the normal performance level compared to non-error inserted state, with the model 

trained through the proposed EACB algorithm. Therefore, the writers thought that with the 

hardware errors aware and through the data-driven training with them, the inference model 

could restrain the nonlinear noises and errors from hardware circuits and its affects to the 

calculation accuracy. In addition, proposed EACB algorithm applied the small batch training 

methodology to traditional AdaBoost algorithm framework in order to fit in the resources 

limited embedding applications’ demands. Compared to traditional Boosting algorithms, the 

proposed algorithm achieved 65× memory demand as well as 10× energy cost. In the other 

paper of the writers[22], the availably and performance of EACB is validated through FPGA 

based system experiments. 

M. Kang et al.[23] proposed a memory-intense, high-throughput and low-energy-cost VLSI 

architecture applicable for the convolutional neural networks with the compute model 

embedded into the memory array cells. The system level experiments of MNIST[24] 

classification application showed the errors and nonlinear noises could be complemented well 

by the strong fitting and error-tolerance ability of convolutional neural networks, reaching a 

final classification error rate of 0.87%. The writers also gave the behavioral model of the 

nonlinear noises as well as the estimated energy by the employed 45nm SOI CMOS circuits. 

The demonstrated system achieved the reduction of 24.5× energy delay product, 5× energy 

cost and a boost of 5× throughput with a relatively high classification accuracy, compared to 

the traditional implemented systems. 

Generally, the processing and analysis for the sensing signals are after A/D converting in the 

traditional embedding sensing systems. In many of such applications, the target of analysis for 

the sensing signals is to make inferences from the sensing signals but people have no concerns 

about the original high dimensional signals data. However, the original high-dimensional 

signals sometimes could be too complex to model, or the computational/storage costs are too 

high to implement. J. Zhang et al.[25] proposed a ‘matrix multiply ADC’ (MMADC) with 

support for matrix multiplying. The writers proposed an algorithm combining the feature 

extraction and classification to a single model matrix enabling multiplication of input signals 

and programmable model matrix. Then the classification calculation is performed to achieve 

the final classification result. In the experiments of two applications including ECG signal-

based arrhythmia detection and image-based gender classification, the results showed the 

classification performance of a MMADC approximates an ideal RBF kernel based SVM 

classifier, with 9.7×, 23× energy cost reduced in two demonstrated application experiments, 

respectively. 
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In 2016, W. Rieutort-Louis et al.[26] proposed a large-area image sensing and detection 

system, integrating sensors and thin-film transistor (TFT) circuit enabling detecting and 

classifying the images from the sensors. Modern large-area electronic (LAE) techniques 

implement over million numbers of sensors scaling and sensing images, while tremendous 

numbers of signals from sensors brings a big challenge to the post processing as well as the 

scalability of the systems. To solve such problems, the proposed system achieved redacting 

3.5~9× of sensing signals number from original 36-way sensing signals through amorphous 

silicon circuit detecting the edges of images. The system employed EACB based models 

embedded into TFT circuits to classify the images with reduced features, the outputs also 

combined to reach stronger discriminate ability. Through EACB training algorithm, the system 

got over the hardware implementation defects and nonlinearities from the TFT circuits, reaching 

a better performance of classification compared to traditional AdaBoost implemented system. 

Within the experiment of 5-label classification of image edges, the demonstrated system 

reached a performance of true positive (TP)>85% and true negative (TN)>95%, approximately 

to an extent of ideal SVM classifier. 

As the core of the data-driven models, the machine learning algorithms play an important role 

in the analysis and process of complex embedding sensing signals. There is a strict demand on 

‘always-on’ detection, while the original complex high dimensional however information 

redundant signals’ storage is not really needed in such applications. However, one of the main 

challenges of applying machine learning algorithms to such applications is that modern machine 

learning algorithms are sometimes really complex with large numbers of parameters or model 

weights. Thus, tremendous computational and storage/cache resources are needed, making their 

availability relatively limited in fact, where I/O accesses cost between the data storage and 

computing model contribute a lot. 

To restrain I/O costs, S. Hanson et al.[27] proposed a mixed system structure including an 

‘always-on’ based low-energy low-accuracy detector and a passive activated high accuracy 

detection node, reducing the total energy cost to an extent. However, all those conventional 

separate computing/storing structure systems still exist a lower limit of energy cost, the I/O 

accesses cost from computing model and data storage (mixed structure system restrains the cost 

but still has the separate structures). To resolve the problem, that is, to change the conventional 

computing/storing-separate structure fundamentally, some combined or embedded structures 

also proposed in succession[28][29]. 

From the literature we can find that in-memory computing has huge potential in areas like 

VLSI, IoT, low power/energy systems, and embedded sensing signal processing systems, while 

the data-driven models, as well as machine learning algorithms, play an important role in 

respective of improving signal analysis accuracy, restraining nonlinearity's effects on system 

performance, and enhancing system robustness and flexibility[30]. Therefore, improving 

system architecture and optimizing algorithms of the model to achieve better performance of 
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the system and further reduced energy cost is a critical trend in recent research on in-memory 

computing. 

1.3 Low precision deep learning with quantized parameters 

In recent years, deep neural networks (DNNs) have been proved to be the state-of-the-art 

solutions in various complicated real-world applications, such as object recognition and 

detection, speech recognition and voice synthesis, and natural language processing. However, 

as the recent designs of DNNs have shown strong abilities even at the same level as human 

beings, a huge number of network parameters and more computational complexity are needed. 

The bandwidth also turns to be one of the limitations for the frequent data communications 

between computing units and memory. Therefore, the deployment of large DNNs on embedding 

systems and mobile applications is still quite difficult, which has extremely serious constraints 

on the resources[31]. The redundancy of the network designs made it possible to compress the 

DNNs with little or no loss of accuracy.  

There are mainly three directions to compress or accelerate the network from the view of 

design redundancy[32]. (See following Table 2 for details). 

(1) The structure of the networks.  

(2) The optimization methods of the networks. 

(3) The hardware accelerators for the networks. 

Table 2 Network compression and acceleration approaches 

Network 

Compression 

and 

Acceleration 

Structure 

Novel components, 

Architecture search, 

Knowledge distillation 

Optimization 

Convolution optimization, 

Pruning, 

Quantization 

Hardware 

accelerators 

Platform 

CPU/GPU, 

ASIC, 

FPGA 

Optimization 

Calculation table, 

Computation reuse, 

Memory optimization 

There are mainly three parts in the approaches of network structures.  

The novel components including separable convolution and residual blocks can reduce the 

number of connections through designing some efficient blocks. The network architecture 

search (NAS)[33] can automatically search for efficient network architectures from a large 

hyper-parameter space which is pre-defined. The knowledge distillation (KD)[34] can generate 
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a compressed network which can reach the accuracy in the same level as a larger network, 

through training the student network to imitate the teacher network. Such student network 

should be simpler and have less computational consumption than the teacher network. 

The network optimization includes the optimization techniques for convolution computations, 

network pruning, and network quantization. Thanks to taking 3D tensors as the input directly 

without flatting, there are fewer coefficients that the convolutional layers require compared to 

the fully-connected layers. Several techniques were proposed to further improve the 

computational efficiency of convolutional operations including Winograd convolution[35], fast 

Fourier transform (FFT) based convolution, and image to column approach[36]. Network 

pruning[37] focuses on pruning the network parameters that have no or less impact on the 

accuracy. Network quantization focuses on the conversion of the parameters' datatypes with 

lower numerical precision types like replacing 32-bit floating point with 8-bit integers. 

The hardware accelerators[38] are mainly designed for the network acceleration with 

specialized platforms including central processing unit (CPU), graphic processing unit (GPU), 

and field programmable gate array (FPGA). Optimized with specified artificial intelligence 

instructions usually within single instruction multiple data (SIMD) units[39], CPUs are mainly 

used for inferences where the system do not have the specialized accelerators for inferencing. 

GPUs produced by different manufactures including NVidia[40], AMD[41], and ARM[42] can 

be used for both training and inference, which have specially optimized units for network 

acceleration. The ASICs are also designed for the training and inference acceleration, including 

Habana from Intel, Tensor processing unit (TPU)[43] from Google, Hanguang[44] from Alibaba, 

and Kunlun[45] from Baidu. FPGAs are also wide used for network acceleration and because 

of the gate level operations, FPGAs are usually used in low-bit-width networks and binary 

neural networks[46]. 

There are also some specific hardware optimizations for neural networks which are usually 

incorporated into some specialized ASICs. The lookup tables can be used for accelerations of 

activation functions. The partial products can be stored in special registers and then easy to be 

reused. The memory can be designed to reduce the computation cycles of a network through 

the memory access ordering with specialized hardware[47]. 

The network quantization is one of the most promising techniques to meet the severe 

constraints on memory footprint and computational power for the deployment of DNNs to the 

embedding/IoT related application scenes. We mainly focus the quantization techniques for the 

DNNs in this thesis. 

1.4 Objective and main work of this research 

This work mainly researched in-memory computing-based machine learning classifiers and 

the responding column reduction algorithms. Traditional machine learning models, trying to 

maximize the model performance namely accuracy or loss optima, usually do not quantize the 
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model parameters. They only manage to quantize parameters to some extent when the number 

parameters are very large, like deep convolutional neural networks with up to billions of 

network parameters, in order to balance the efficiency of employing resources of computing 

and storing. Based on the scene of application in this work which is power/energy-restricted 

embedding system applications, as the carrier of computing model, memory arrays like SRAM 

cells are with a limited structure and such carried model can only employ linear model with 

limited bits (1-Bit for 6T SRAM cells) of the resolution, leading to a necessity of quantization 

for parameters. Meanwhile, the original classification objective becomes a new non-convex 

mixed integer programming problem. As a result, the traditional numerical optimization 

methods like stratified gradient descent or Newton’s method cannot be used directly given such 

a constraint. In addition, the linear classifier, whose classification performance is relatively 

weak because it only generates linear decision boundary, becomes even weaker for the existed 

nonlinear noises and hardware errors in the circuits and memory cells. This research employed 

the Error Adaptive Classifier Boosting (EACB) algorithm based on the quantized linear models 

fit for training models applied in embedded hardware and explored different methods used for 

approximate 1-Bit quantization of linear models. Different from general full-resolution models 

applying digital calculations, in-memory-based models use analogy characteristics of memory 

circuits like SRAM cells, the real model’s performance can be degraded in that the existence of 

cells’ nonlinearity. Within the simulations in this research, in order to validate the performance 

of the in-memory classifier with different strengths of nonlinearity namely time-dependent 

variability, we generated and inserted noisy data in different strengths (standard deviations of 

normal distribution) to simulate the variability, achieving the error-aware model training in the 

afterward training phase. 

A general classification task usually is a multi-label classification one. For example, the 

handwritten digit dataset MNIST used in this research is a 10-label (0~9) classification task and 

‘all-versus-all’ (AVA) strategy is applied to make the final decision, where the original 10-label 

task is reformed to 45 binary classification tasks, like 0vs1, …, 0vs9; 1vs2, …, 1vs9; ...; 8vs9. 

For a single classification loop, 45 binary classifiers make the binary decision for each binary 

task first and the AVA voter makes the final prediction based on votes each class got. The 

conventional implemented in-memory-based classifier used a fixed number of weak binary 

linear classifiers and combined them to a strong binary classifier for each binary task. However, 

in this research, we considered reducing the redundant numbers of weak binary classifiers based 

on the fact that difficulties may vary among different binary tasks. In order to explore the 

possibility of redacting the number of memory cell arrays used in the in-memory machine 

learning classifiers, we proposed heuristic algorithms based on several different criteria, after 

exploring the relationship between final AVA accuracy and the number of weak classifiers used 

in different binary tasks.  

Binary neural networks (BNNs) have drawn much attention because of the most promising 
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techniques to meet the desired memory footprint and inference speed requirements. However, 

they still suffer from the severe intrinsic instability of the error convergence, resulting in an 

increase in prediction error and its standard deviation, which is mostly caused by the inherently 

poor representation with only two possible values of -1 and +1. In this work, we have proposed 

a cost-aware layer-wise ensemble method to address the above issue without incurring any 

excessive costs, which is characterized by 1) layer-wise bagging, 2) cost-aware layer selection 

for the bagging.  

Furthermore, not only the inherently poor representation with only two possible values of -1 

and +1, and the training process with quantization also is an important factor that causes them 

suffered from the severe intrinsic instability of the error convergence, resulting in an increase 

in prediction error and its standard deviation. In this work, we have proposed a new training 

procedure with relaxed quantization to address the above issue without incurring any excessive 

costs, which reveals the possibility of employing relaxed quantization on both activations and 

weights, and the corresponding experiments are conducted to evaluate the proposed technique. 

1.5 Constitution of this thesis 

The arrangement of chapters is as follows: 

Chapter 1 is the introduction, which introduced the background of this research, including the 

concept, development, and application of in-memory computing. Several works of literature 

were summarized to illustrate the current state of research in the area of in-memory computing. 

Finally, the chapter arrangement was introduced briefly. 

Chapter 2 mainly introduced the proposed memory array reduction algorithms. Since the 

boosted model is based on the quantized linear classifiers and the actual energy cost of such a 

system is in positive relation with the total area of the SRAM array, the key to restraining energy 

cost is to reduce the total area of the SRAM arrays, i.e., the number of columns (weak 

classifiers). This chapter researched several heuristic criteria-based algorithms enabling the 

reduction of weak classifier numbers employed to the trained boosted model. 

Chapter 3 presents the low precision neural network and its instability issue of conventional 

works and then proposes a layer-wise ensemble method for the binary neural network (BNN), 

followed by the experiments to compare the conventional methods and the proposed one the 

metrics of the stability and accuracy of the network.  

Chapter 4 presents the conventional training process of BNN with relaxation technique and 

proposes a new training procedure that employs relaxations to both low precision weights and 

activations, followed by the comparisons between the proposed method and conventional 

training process in various cases of different optimizers or with and without batch normalization. 

Chapter 5 concludes this thesis with the main contributions summarized. 
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Chapter 2 Improving bit energy efficiency of in-memory boosting classifier 

Abstract 

Nowadays, artificial intelligence is widely being applied on the Internet of Things and sensor 

signal processing area. However, with the computing model in a higher complexity, there is an 

increasing need for ultra-low-power MAC (multiply and accumulate) operation for input feature 

vector and model parameters in order to control the system power. Meanwhile, with the memory 

technology scaling, the increasing impact of hardware variation also demanding higher system 

resilience for error-adaptive processes and fault tolerance. To get over such challenges, the 

direction of in-memory computing, where the computation is performed within memory (like 

SRAM bit-cell), is highlight recently. A column reduction technique for an in-memory machine-

learning classifier in 6T SRAM cells is discussed in this work, based on an error-tolerant 

boosting algorithm (a.k.a., error-adaptive classifier boosting, EACB). The proposed technique 

is mainly applied to the in-memory machine-learning classifier system wherein the weight of 

the linear model is restricted to 1 bit applicable for standard 6T SRAM cells, employing the 

EACB algorithm to recognize down-sampled handwritten digits. First, the number of columns 

of the boosted classifier is pruned. Second, three methods: greedy search, fast version of greedy 

search, and worst-care optimization, are discussed and implemented. Finally, the reduction 

effects of the proposed methods are compared. The simulation results show that besides the 

11.50% column reduction from pruning, the proposed methods can further reduce 3.23%, 5.14%, 

and 5.49% of the column number on average, respectively, with similar accuracy to ensure that 

the corresponding part of the model can be reduced to achieve better energy saving. 

 

2.1 Introduction 

In-memory computing is implemented generally through the analogy characteristics of the 

memory circuit in different conditions and modes and its peripheral circuits. This research 

mainly the in-memory computing machine learning classifiers implemented based on SRAM 

cells. 

Within SRAM cells based in-memory computing system, the parameters of the classification 

model (1-Bit quantized linear classifier) are trained and stored in the cell array of SRAM. Input 

data to be classified is transferred into analogy low voltage signals (<400mV) and connected 

with the model/memory array via word-lines of SRAM. According to the model parameter 

stored in the cell (+1 or -1), the differential voltage is formed on BL/BLB and summarized 

current results in the final binary decision, +1 or -1 by the comparator, which enables the ‘sign’ 

function. All the binary decisions get to the final multiclass decision after the all-vs-all voter. 

The feature of such a system is that employing word-line-parallel computation enabled by 
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SRAM structure, the efficiency of calculating as well as the speed of making inferences is 

improved and the throughput of the system is enlarged, compared to a computing/storage 

separate system. Thus, the total cost of energy of such a system is reduced. Such a feature of in-

memory computing system fits the scene of embedded always-on detecting applications.  

The basic theory of SRAM-based in-memory computing classifier and the comparison 

between conventional computing/storage separate systems would be introduced from different 

points of view in succession in the following sections. 

2.1.1 Theory of SRAM based in-memory computing 

Fig 2.1 shows one column of cell array of standard 6T SRAM. 

Each column of SRAM cell array is composed of word-lines (WL) in the horizontal direction, 

bit-line/bit-line-bar (BL/BLB) pair in the vertical direction, and the bit cells with an equal 

number of WLs. The data, either +1 or -1, is stored in the bit cell by setting the state of transistors 

with different bit-line voltages through ‘write’ mode. 

As normal memory storing data, there are mainly two modes of SRAM employed: 

1) When using the read mode, the WL connected to the address of the target to read is 

pulled up with high voltages. Then the data is read from the selected bit-lines. 

2) When using the write mode, the WL connected to the address of target to write is pulled 

up with high voltages, similarly. Then set the bit cell state to 1 or 0, employing the 

stronger driver of BLs, compared to the bit cell. 
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When an SRAM array that stores the model parameters is treated as a binary linear classifier, 

the classification process per decision is as follows: 

The BL/BLB is pre-charged first. Then the same analogy voltages, which are from the DAC 

converting the input data to the analogy signals, are applied to all the WLs. Because of the low 

voltage range (0~400mV), the state of the bit cells will not be changed. The responding bit cell 

current will be applied to either BL or BLB according to the data stored in the bit cell. Therefore, 

the voltage on the BL/BLB can be treated as a differential signal, which is equal to a 

multiplication between the input data and stored 1-Bit model parameters. Finally, after BL/BLB 

discharging, the accumulated BL current results in the final binary decision through a 

comparator implementing sign function[48].  

There are several special points to distinguish classification process and normal modes: 

Different from the high voltage applied on the BL in normal read/write mode, in order to hold 

the classifier’s parameters unchanged, the low voltage signal is employed on BLs. 

Fig 2.1 One column of cell array of standard 6T SRAM 
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Since each column of SRAM bit cells forms a binary classifier which needs to be multiplied 

by all the input feature vectors of one input sample, all the WLs should be driven in each 

decision-making cycle. In addition, if the classifier is extended into a multi-label classifier 

employing AVA strategy, all WLs also should be driven at the same time and sending the 

analogy signal standing for the input feature vector. Thus, it is necessary that the input data is 

in the shape of a 1-dimension vector or should be reshaped into such a dimension. 

2.1.2 Comparison of in-memory computing and separated system 

As the parameters of a binary classifier stored in a column of bit cells need to be quantized to 

1-Bit, the accuracy and performance of such a classifier are strongly degraded. Therefore, such 

a binary classifier can only achieve a somehow quite weak classification boundary, viewed as 

a ‘weak’ classifier. A solution to improve the accuracy of the classifier is to employ some 

ensemble learning algorithm like Boosting[49], combining several relatively weak classifiers’ 

decisions with weights to an ensemble classifier with stronger performance. In order to achieve 

the binary classifier with better single classifier accuracy, Z. Wang et al.[50] proposed 

‘Constraint-Resolution Regression’ algorithm employing mixed-integer-programming 

solver[51] to train the binary classifier, reaching a higher accuracy compared to the performance 

of 1-Bit quantized binary classifier directly. The writers employ such binary classifier as the 

base learner and apply a variation of Boosting algorithm to get the ensemble classifier. With the 

experiment on the classification of the MNIST dataset down-sampled from 28×28 to 9×9 on 

a standard 128×128 6T SRAM, the final 10-way classification accuracy of 90% is achieved 

with the energy cost of only 0.63nJ per decision. Compared to traditional storage/computing 

separately implemented system with a cost of 71.61nJ, the proposed system achieved 113x 

reduction of energy cost and 1525× reduction of EDP. 

The detailed comparison between in-memory computing based and traditional 

storage/computing separately based system can be considered in the following respective[52]: 

1) Bandwidth. Within the separated system, multiple accesses to the addresses of memory 

where the computing model is stored are necessary. Within the in-memory-based 

system, the in-memory computing enabling the computing model embedded into the 

memory cells, and all the feature vectors are available instantly. Thus, the bandwidth of 

the system is enlarged. 

2) Energy. With regard to the energy of the two systems, both the discharge of BL/BLB is 

the main part. However, within the separated system, higher resolution means more 

BLs. Though the WLs are driven at the same time within the in-memory-based system, 

the low voltage employed contributes to rather lower energy of the whole system. 

3) Delay. Within the traditional separated system, the total number of accesses and 

processing cycles increases as the input data scales, leading to the increase of system 
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delay. However, the massive parallel processing that existed in the in-memory 

computing system enables the relatively stable BL swing, contributing to the reduction 

of system delay. 

4) SNR. Within the separated systems employing the low BL swing design, a rather high 

SNR can be reached. On the other hand, in the in-memory computing system with a 

variety of states of each column of bit cells according to the model’s parameters, the 

SNR is changing in dynamic. In addition, the differential voltage decreases with the 

capacitance of BLs, leading to a relatively lower signal passed through the comparator 

finally. Thus, the SNR of the system is decreased. 

After the previous comparisons, it can be found that compared to the traditionally separated 

system implementation, the in-memory computing system achieves relatively higher bandwidth, 

lower delay as well as lower energy, with the cost of the system to an extent. Thus, such a trade-

off of performance can bring an alternative to some embedding hardware systems and 

applications with the scene and demands of low delay and low energy cost. 

2.2 In-memory machine learning classifier 

2.2.1 Structure of SRAM based in-memory classifier 

The simulations of this research mainly focus on the classification algorithms applied in the 

in-memory computing classifier, extending to the responding memory array reduction methods. 

The employed system in this research is of the similar structure of the implemented MNIST 

classification system in the literature[52]. The diagram of the structure is shown in Fig 2.2. 



20 

The main part of the structure is a 6T SRAM memory array, where each bit cell 𝐶𝑖,𝑗 stores a 

1-Bit state standing for the responding model parameter +/-1 and each column of 𝑚 bit cells 

consist of a 1-Bit ‘weak’ linear model, since it has only 1-Bit resolution parameters and can 

only generate linear decision boundary with limited classifying ability.  

To improve the performance of such weak classifier, the Boosting algorithm (see Fig 2.3), 

which will be introduced in detail, is employed to train boosted strong classifiers combining 

several weak linear classifiers.   

With regard to the multi-label classification task, all-vs-all strategy is employed to generate 

the final classification decision from all 45 boosted binary classifiers.  

Fig 2.2 Structure of in-memory classifier 

Fig 2.3 Diagram of Boosting classifier 
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There are some things which should be noticed that the implementation of such a hardware 

system needs not only a standard 6T SRAM but certain peripheral circuits like WLDAC which 

is between the memory arrays and input feature buffer, address decoder, and BL drivers, etc., in 

order to support all the features needed of the in-memory computing system. Since the main 

objective of this research is to simulate and research the algorithm part of the in-memory-based 

machine learning classifier, the detailed discussion for the peripheral circuits will not be 

included in the following part of this work. 

2.2.2 Problems of conventional SRAM based in-memory classifier 

Though in-memory classifier achieves quite great progress in the respective of reducing 

energy of system compared to the traditional separated systems, such a system requires still 

quite a lot of numbers of memory arrays, up to 810 columns for the MNIST task, in order to fit 

the input data as well as the hardware errors and nonlinear noises existed in the SRAM bit cells, 

contributing to about 76% of the total energy costs in each cycle by the classification processing.  

In addition, through the EACB algorithm, the conventional implemented system corrects 

circuit non-linearity which is inborn from manufacturing. But it cannot correct acquired time-

dependent variability for uncertain strength of variation. In the following chapters, this research 

explores the multiple classifiers which try to correct not only circuit non-linearity but also time-

dependent variability within a range via employing several error-adaptive models pre-trained 

with different scaled variations. 

Based on the theory of in-memory computing, it is necessary to transmit the converted input 

signals to all the bit cells through the WLs at the same time. Thus, the energy used for the 

classifying process is related to the number of all of the memory bit cells, which is equal to the 

size of the parameter matrix of the classification model. Thus, reducing the number of bit cell 

columns to improve the energy cost in the classifying process is a critical method to improve 

the total energy cost of the system. The detailed introduction will be illustrated in the following 

chapters. 

2.3 Error Adaptive Classifier Boosting (EACB) 

2.3.1 AdaBoost algorithm 

Within the process of Boosting algorithm, the first base learner is trained using initial dataset, 

then, adjust the distribution of the dataset according to the performance of the trained base 

learners and train the base learners iteratively[53]. Detailed implementations include paying 

attention to the wrongly classified samples, increasing the weights of the wrongly classified 

samples and increasing the number of the wrongly classified samples, i.e., resampling, etc. 

Based on the adjusted dataset, iteratively repeat the training & reweighing process until some 

preset conditions satisfied, like maximum number of base learners and threshold of boosted 

accuracy. Finally, combine the trained base learners by weights and output the cumulative 
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decision[54]. Among the various of boosting algorithms, AdaBoost[55][56] is a representative 

one and the ‘additive model’ based formation is simplified relatively[57], as follows 

𝐻(𝒙) =∑𝛼𝑡ℎ𝑡(𝒙)

𝑇

𝑡=1

 

(2.1) 

From (2.1) we can see that this is an additive model by summing the decisions of the base 

learners by weights. The loss function is an exponential loss function (binary classification case), 

as (2.2), where 𝐷 is distribution of the dataset 

𝐽𝑒𝑥𝑝(𝐻|𝐷) = E𝒙~𝐷[𝑒
−𝑓(𝒙)𝐻(𝒙)] 

(2.2) 

The loss is exponential expectation of errors given the dataset with some distribution. 

The process of AdaBoost algorithm is as follows: 

Given dataset (𝑥1, 𝑦1),… (𝑥𝑚, 𝑦𝑚), 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 = {1,−1}, initialize the data distribution 

𝐷1(𝑖) = 1/𝑚. For iteration 𝑡 = 1,… , 𝑇, repeat: 

1) Train the base learner based on distribution 𝐷𝑡 

2) Make a weak prediction ℎ𝑖: 𝑋 → {1,−1} by the trained base learner and calculate 

the error 𝜖𝑡 of prediction 

𝜖𝑡 = Pr𝑖~𝐷𝑡[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖] 

(2.3) 

3) Calculate the weight of the trained base learner by 𝜖𝑡 

𝛼𝑡 =
1

2
ln⁡(

1 − 𝜖𝑡
𝜖𝑡

) 

(2.4) 

4) Update the distribution 𝐷𝑡 by weight 𝛼𝑡, where 𝑍𝑡 is normalizing factor 

𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖)

𝑍𝑡
exp⁡(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)) 

(2.5) 

Until iterations stop, the final prediction of ensemble classifier is 

𝐻(𝒙) = sign(∑𝛼𝑡ℎ𝑡(𝒙)

𝑇

𝑡=1

) 

(2.6) 

It should be noticed that a ‘base (weak) learner’ also needs somehow stronger than a 
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prediction by random guesses which can be defined by a random predictor with an accuracy of 

about 0.5. Different from other ensemble algorithms, it is necessary that the base learners can 

be trained from the dataset with the same distribution. For learners who accept the weights for 

samples, the boosting process can be implemented by updating the sample weights. For those 

who cannot be trained with sample weights, the boosting process can be implemented by 

resampling the dataset according to the performance of the previous base learners, such as 

subsampling the samples correctly classified, oversampling the sample wrongly classified, etc. 

Compared to the implementation of reweighing, the advantage of resampling is that when the 

base learner cannot satisfy the basic condition of accuracy larger than 0.5, the iteration can get 

into the next round directly, achieving ‘restart’ to avoid weak performance of the ensemble 

classifier caused by under-training.  

AdaBoost is widely applied in various prediction tasks for its simplified theory and quite good 

performance. In addition, it has many variation algorithms being proposed referring to different 

scenes of applications and demands. Within the area of in-memory embedding systems with 

limited computing/memory/power resources as well as hardware errors and nonlinearity such 

that normal AdaBoost algorithm is hard to be applied, a variation of AdaBoost, ‘Error adaptive 

classifier boosting’ (EACB) algorithm is proposed as a solution to such problem. 

2.3.2 Error Adaptive Classifier Boosting algorithm 

The strict resource/cost limits of embedding systems and instinct hardware errors, 

nonlinearity can lead to the degradation of inference models being applied in practice, which is 

always a big challenge in areas like embedding signal processing and machine learning[58]. 

With regard to research on such problems, the direction of constructing machine learning based 

data-driven models to analyze target data as well as the environment data, including hardware 

errors and nonlinear noises, makes some progresses, of which ‘Error adaptive classifier 

boosting’ (EACB) is a representative one. 

EACB has some similarities with FilterBoost[59]. Original AdaBoost needs base learner can 

be trained with the entire dataset in some distribution in each iteration and update the weights 

for samples in the next iteration based on the error rate of current base learner. However, it 

needs huge computing/memory resources to process the entire dataset in each iteration. To solve 

this problem, FilterBoost and EACB convert the entire dataset to some samples in small batch 

of from the original dataset generated. Thus, the necessary computing and memory resources 

are largely reduced. Finally, a similar performance can be achieved by adjusting the number of 

samples in one training batch.  

Within FilterBoost, the reweighing is implemented through the designed filter calculating 

sample weights and corresponding acceptance probabilities, where the accessibility to the entire 

dataset is necessary. In addition, the samples in the training batch are divided into two parts of 

which one is used to train the current base learner and the other is used to calculate the final 
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classifier weight based on its accuracy. 

Different with FilterBoost, it is considered that within the scene of embedding sensing 

systems, since the accessibility to the entire dataset is hard to achieve, it is usually applied that 

generating training batches from a data stream. Hence, with the procedures of the framework 

of AdaBoost algorithm adjusted, EACB employs the previous training batch to train the current 

base learner and uses current training batch to evaluate the performance of current learner, 

calculating the classifier weight and reweighing the training batch by ensemble classifier. The 

detailed procedures of EACB are as follows (case of binary classification): 

Generate training batch (𝑋𝑡, 𝑦𝑡), 𝑦𝑡(𝑖) ∈ {1, −1}, 𝑖 ∈ {1, … , 𝑁} with batch size of 𝑁 from 

dataset 𝑆 , where 𝑡 = 0, … , 𝑇  standing for number of iterations. Initialize ( 𝑡 = 0 ) the 

prediction of ensemble classifier for 𝑋𝑡 as 𝐹0(𝑋0) = 0.  

For iteration 𝑡 = 1,… , 𝑇, repeat: 

1) Update sample weights of previous (𝑡 − 1) training batch based on the previous 

prediction of the ensemble classifier and normalize 

𝐷𝑡−1(𝑖) = 1/(1 + exp⁡(𝑦𝑡−1(𝑖)𝐹𝑡−1(𝑋𝑡−1(𝑖))) 

𝐷𝑡−1 = 𝐷𝑡−1/𝑍𝑡−1 

(2.7) 

2) Train the current (𝑡) base classifier with previous (𝑡 − 1) training batch and 

corresponding distribution 

ℎ𝑡 = train(𝑋𝑡−1, 𝑦𝑡−1, 𝐷𝑡−1) 

(2.8) 

3) Get current training batch (𝑋𝑡, 𝑦𝑡) from 𝑆 

4) Calculate error rate 𝜖𝑡 of current base classifier on current training batch 

5) Calculate classifier weight of current base classifier 

𝛼𝑡 =
1

2
ln (

1 − 𝜖𝑡
𝜖𝑡

) 

(2.9) 

6) Update current ensemble classifier 

𝐹𝑡 = 𝐹𝑡−1 + 𝛼𝑡ℎ𝑡  

(2.10) 

Obtain the final prediction 

𝐻 = sign(𝐹𝑡) 
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(2.11) 

With the procedures of EACB, it is achieved that only one training batch is needed in an 

iteration, thus, the necessary resources are further reduced, and the ability of online learning 

makes the training models deployed within the embedding hardware and fitting the environment 

data.  

2.4 Column reduction technique for in-memory boosting classifier 

Through the previous chapters, it was introduced that the performance of 1-Bit Constrained-

Resolution Regression (CRR) based classifier can be improved by boosting algorithm like 

EACB and to get over time-dependent variability, the proposed multiple classifiers can be 

applied to improve the performance of the model, bringing a stronger robust system towards 

the variability. In this chapter, from the perspective of reducing the column numbers of model, 

the methods to decrease the energy costs further will be explored. 

2.4.1 Origin of the number of the memory column arrays 

Within the 1-Bit quantized linear model-based in-memory boosting classifier, it is necessary 

to multiply the input feature vector and all 1-Bit linear models per decision, which is the main 

source of the computation costs. From the contents in the previous chapters, it is also critical 

that the final accuracy is in positive correlation to the number of EACB iterations. However, 

each iteration means one more column in the SRAM memory array correspondingly, increasing 

the necessary energy cost per classification decision. In addition, the nonlinearity and variability 

in the bit cells make the actual number of arrays of such in-memory classifiers scale to reach a 

satisfying performance of classification with more energy costs. 

Therefore, it can be considered that improve the system cost performance by reducing the 

number of memory bit cells that are necessary within the computation. The number of bit cells 

for computing is mainly decided by the multiplications of its row number and column number, 

where the row number is the same as WLs number, i.e., number of features and the column 

number is the same as the 1-Bit linear weak classifiers. Since the number of features is varying 

referring on the target data and the application as well as the preprocessing methods, it is always 

a case-by-case value. This research does not limit the type of input data and the preprocessing 

methods, we only consider the reduction of memory arrays column number, i.e., reducing the 

number of weak classifiers, to reduce the total energy cost of the system. 

However, reducing the number of weak classifiers means the less iterations of boosting, which 

is easily leading to under fitting of the model and loss of accuracy. Thus, holding the 

performance of the classifier, to reduce the total number of weak classifiers is the target of this 

research on the column reduction methods for in-memory classifier. 
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2.4.2 Redundancy of memory arrays 

Consider the redundancy of the memory column arrays, that is the redundant weak classifiers. 

Since the process of boosting training is to fit the data with some distribution iteratively, which 

is a process of decreasing the residual to the re-distributed dataset gradually. However, when 

the residual gradually deceased to a small value, the newly trained weak classifiers contribute 

less, which can be somehow redundant for the boosted classifier. From the simulation result of 

the previous chapter, following Fig 2.4 shows the final accuracy with the number of iterations 

with the input data of 11×11 size without variability, employing the implementation of 

conventional work. 

 

From the figure, we can find that the model by the conventional implementation, the column 

number t, which is 13, for each boosted classifier is chosen by the accuracy maximum of train 

valid dataset. However, we can see that after about 10 iterations, it probably comes to 

convergence. So, there can be some redundant spaces for us to optimize, which is exactly the 

key point this research focus on. 

2.4.3 Baseline of performance 

Because of the target of this chapter, the performance of the classifier not only includes the 

classification accuracy but the total number of columns (weak classifiers) as well, so the 

baseline here also has 2 metrics: accuracy and total column number. To be simplified, note the 

dataset with a down-sampling size of 11×11 and variability strength of 0 as D(11,0) 

Fig 2.4 Redundant spaces of conventional work 
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For example, as D(11,0), each boosted classifier comes to the maximal accuracy 0.936 at 

iteration 13, meaning each boosted binary classifier has 13 weak classifiers in 13 columns. Since 

all-vs-all strategy is employed on 10-label task, the total column number of such classifier is 

45×13=585. Therefore, for dataset D(11,0), the baseline performance of the model is 

accuracy=0.936 and number of columns=585 and the optimized model should compare with 

those metrics. 

2.5 Heuristic column reduction algorithms 

This section mainly researches the column reduction algorithms applicable for the in-memory 

Boosting ensemble classifiers with the 1-Bit linear model as the base classifier. In the previous 

section, we know that for D(11,0), 585 columns are needed. However, the difficulty is that the 

possible searching space for such a problem is quite large. What’s more, the process of boosting 

is iterative, not independent which the current iteration needs the performance of the previous 

iteration to reweighing the samples, thus, the original order in the boosting process should be 

protected. This section explores the column reduction methods from the heuristic algorithms’ 

perspective.  

2.5.1 Pruning columns for different boosted classifiers 

Within the all-vs-all (AVA) voting strategy, the original 10-class classification problem is 

divided into 45 binary classification tasks. However, the difficulties for different binary tasks 

are also different and the best EACB iteration for each boosted classifier also varies. For 

example, for some hard classification tasks, it may need nearly 10 or more iterations to reach 

the maximum accuracy, while 3 or fewer iterations can be enough for some simple classification 

tasks. 
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The first step to reduce the columns is by pruning the columns for different boosted classifiers, 

which is cutting down the columns after the boosted classifier reaching its maximum of 

accuracy. Fig 2.5 shows the comparison of columns of fixed same iterations and columns with 

pruning for D(11,0). 

The criterion of pruning is simply selecting iterations of best train accuracy of each boosted 

classifier, rather than conventional same fixed EACB maximum iteration. 

The comparison of accuracy of model with or without pruning by iteration is shown in Fig 

2.6. Both models have an accuracy at the same level and model with pruning gets earlier 

convergence compared to model without pruning. For D(11,0), this reduces 206 columns from 

585 to 379. 

Fig 2.5 Conventional same iterations VS. iterations of best accuracy 
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From the Fig 2.6, it can be seen that through pruning process, the model converges in just 10 

(maximal) columns, reaching the similar performance as the original model. 

It should be noticed that the column numbers after pruning is the maximal number, compared 

to the fixed original column number, which stands for the maximum of the iterations(columns) 

of boosting process, because from the Fig 2.5 we can see that after pruning the boosted 

classifiers’ column numbers are not fixed and vary in a range, but it is controlled that the 

maximum of the columns cannot surpass that of the original model. 

2.5.2 Reducing columns by greedy search 

In this and next section, two column reduction algorithms will be proposed based on different 

searching strategies, which can be applied to the model after being processed by the method of 

pruning proposed in the previous section. 

First, consider the process of the columns growing, where for each binary task the boosted 

classifier will iteratively train 𝑡(1 ≤ 𝑡 ≤ 𝑇)  weak classifiers in order. In this independent 

process, the boosted classifiers for other binary tasks are not considered, which is a searching 

process for the local optima. However, the final prediction is given by the all-vs-all voter, 

leading to the circumstance that many boosted classifiers have reached the maximum by 12 

columns on their own binary task for example, but the final AVA accuracy is lower than that of 

the model with maximum columns of 10. 

Therefore, with protecting the original training order of boosting, consider changing the 

column growing strategy for the boosted classifiers, according to the obtained history training 

Fig 2.6 Accuracy with pruning VS. accuracy without pruning 
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accuracy records from the original training process. In each step of growing column, consider 

the contribution to the final AVA accuracy of growing the current column from the initial state, 

i.e., number of columns as ∑ 𝑡𝑖
45
1 = 45, 𝑡𝑖 = 1, 𝑖 = 1,… ,45 to the final state. For example, for 

D(11,0), the final state is that the column number is ∑ 𝑡𝑖
45
1 = 379, where 𝑡𝑖 is corresponding 

column number of boosted classifiers. The final accuracy for the state in each step will be saved 

and the target is to find one middle state with less columns, whose final accuracy is also higher 

than that of the final state. 

The detailed strategy of selecting the boosted classifier to grow a column in each step, a 

greedy-search-based algorithm is proposed in this research. According to the gain to the final 

AVA accuracy of each boosted classifier that has not grown to the maximal column number, 

only the boosted classifier with the maximal gain to the final AVA accuracy will be selected to 

grow one column. 
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The procedures of the proposed algorithm are as following pseudocode in Fig 2.7. 

‘calcAccAVA’ means calculating the all-vs-all accuracy of the model. ‘col’ is an array to 

record the total column number in each iteration step, while ‘accfinal’ is also an array to record 

the final AVA accuracy. The footprint ‘prn’ is as the model after pruning and ‘grd’ is referred to 

proposed greedy search. ‘acctest’ is the temporal array with 45 elements to record the responding 

AVA accuracy of boosted classifier if any of them grows one column. 

The following Fig 2.8 shows the comparison of the pruned model and the model processed 

by greedy search algorithm. 

  The Fig 2.9 shows the result of column number of each boosted classifier by greedy search 

labeled as the same rule for D(11,0).  

// Greedy search 

// index begins from 1 

input: col
prn

 // column number of pruned model 

output: col
grd

 // column number of greedy model 

acc
final

 // accuracy of greedy search by iteration 

// init 

 1. for i from 1 to 45 

 2.   col
grd

[i] = 1 

 3. endfor 

 4. acc
final

 = zeros(1, 1 + sum(col
prn

) – sum(col
grd

)) 

 5. iter = 1 

 6. acc
final

[iter] = calcAccAVA(col
grd

) 

// iter 

 7. while sum(col
grd

) < sum(col
prn

) 

// one step greedy 

 8.   iter = iter + 1 

 9.   acc
test

 = zeros(1,45) 

10.   for i from 1 to 45 

11.     if col
grd

[i] < col
prn

[i] 

12.       col
grd

[i] = col
grd

[i] + 1 

13.       acc
test

[i] = calcAccAVA(col
grd

) 

14.       col
grd

[i] = col
grd

[i] – 1 

15.     endif 

16.   endfor 

17.   i
max

 = argmax(acc
test

) 

18.   col
grd

[i
max

] = col
grd

[i
max

] + 1 

19.   acc
final

[iter] = max(acc
test

) 

 // end of one step greedy 

20. endwhile 

Fig 2.7 Greedy search column reduction method procedures 



32 

The curve labeled with ‘greedy-opt’ represents the accuracy changing with the total column 

number (iteration of greedy search) and it reaches the same accuracy (‘similar Acc’) as the result 

with pruning before the end point which achieves the reduction for the columns. The curve 

labeled with ‘w/ pruning’ and ‘w/o pruning’ is the same as the result with and without pruning. 

It shows that the accuracy path of greedy search is more near to the left-top corner within 

most of the iterations meaning that with same columns it finds column setting with higher 

accuracy than the pruned result by greedy search. 

Fig 2.8 Accuracy by iteration of greedy search 

Fig 2.9 Column number for each boosted classifier by greedy search 
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2.5.3 Reducing columns by fast greedy search 

However, only one column is grown in each step, leading to a huge cost of computation. To 

improve the algorithm, consider the column growing process first, which is shown as following 

Fig 2.10. 

It is shown that there is no strong trend of incensement of columns but rather sparse and 

existence that column number of the same boosted classifier is increased within some 

continuous steps. Thus, it is considered that the growing of columns in several steps can be 

integrated, rather than by decision in each step, which is quite resource consuming. We consider 

converting the original greedy column reduction algorithm to a fast version where an extra 

Fig 2.10 Column growing process (greedy) 
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procedure is added that after growing one column to the selected boosted classifier in any step, 

repeat growing one more column to the boosted classifier until the final AVA accuracy is not 

increased. The detailed description is as following Fig 2.11 

To be simplified, the initial process is as the function ‘init()’ and the procedures of original 

greedy process in each step are simplified as function ‘oneStepGrd()’. 

At first, the procedures of initialization are the same as previous, obtaining the accuracy array, 

column number array and variable ‘iter’. The procedures in the first while-loop are also the 

same as normal greedy noted as function ‘oneStepGrd()’, finally reaching the index of selected 

boosted classifier ‘imax’ and current iteration number ‘iter’.  

Then entering the addition ‘fast’ part inner loop, repeat growing to the selected boosted 

classifier if it can bring gain to the final AVA accuracy, otherwise break the inner loop, and enter 

the next normal greedy step. The stop condition is the same as the normal version, whether the 

total number of columns is over that of the pruned model. 

The similar accuracy result of fast greedy search algorithm is as following Fig 2.12, while the 

// Fast greedy search 

input: colprn  

output: colgrdfast, accfinal  

// init 

1.  colgrdfast, accfinal, iter = init(colprn) 

2.  while sum(colgrdfast) < sum(colprn) 

   // one step greedy 

3.    colgrdfast, accfinal, iter, imax = oneStepGrd() 

     // fast greedy 

4.    while colgrdfast[imax] < colprn[imax] 

5.      colgrdfast[imax] = colgrdfast[imax] + 1 

6.      accfast = calcAccAVA(colgrdfast) 

7.      if accfast > accfinal[iter] 

8.        iter = iter + 1 

9.        accfinal[iter] = accfast 

10.     else 

11.       colgrdfast[imax] = colgrdfast[imax] – 1 

12.       break 

13.     endif 

14.   endwhile 

15. endwhile 

Fig 2.11 Fast greedy search column reduction method procedures 
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original greedy search is in shallow color and noted as ‘Original’ 

 Fig 2.13 shows the result of column number of each boosted classifier by fast greedy search. 

Through the fast greedy algorithm, the more efficient processing is achieved. According to 

the timer records, compared to the original greedy search, over 50% of the processing time can 

Fig 2.12 Accuracy by iteration of fast greedy search 

Fig 2.13 Column number for each boosted classifier by fast greedy search 
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be saved. It reaches a similar result of 11 columns reduced with similar accuracy on D(11,0). 

Similarly, the detailed column number growing process is given as following Fig 2.14. 

As shown in the figure of column growing process, several columns are grown continuously 

to the same boosted classifier in continuous greedy step, rather than one column in one step, 

which saves the processing time greatly. By comparing the process of fast version with the 

normal version, it can be found that the process of fast version becomes sparser but is similar 

with the normal version. 

Fig 2.14 Column growing process (fast greedy) 
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2.5.4 Reducing columns by worst-care 

In this section, another heuristic column reduction algorithm based on a special rule will be 

introduced. 

Through greedy search algorithm which is based on the rule of maximal accuracy gain first, 

the local optima of training phase are converted to the maximum of final AVA accuracy in each 

search step, achieving the reducing the columns finally. 

Again, consider the difference of difficulty of 45 binary classification tasks. Such difference 

leads to the great differences in performance of boosted classifiers on their binary task, which 

will have an impact on the performance in the final all-vs-all voting phase. From this point, 

there is a problem with the greedy search method, which is that the selected optimal state in 

each search step is not the global optimal state of all steps, for the current selection will affect 

the selection in the next step. If there is a local optimal state in the early phase selected by the 

algorithm and not manage to escape from it, the final performance may be worse. 

To avoid solving the global maximum, which is relatively difficult to solve, we can consider 

another criterion from the point of different difficulties of subtasks. First, see Fig 2.15 as the 

comparison of the boxplot of binary classification accuracy on the 45 binary tasks and the final 

AVA accuracy in all 20 experiments. 

In Fig 2.15, the x-axis stands for the index for the different dataset in totally 20 combinations 

of down-sampling sizes {5×5, 7×7, 9×9, 11×11} and strengths of variability {0, 50mV, 

Fig 2.15 Binary accuracy VS final AVA accuracy 
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100mV, 150mV, 200mV}. And the y-axis stands for the accuracy of classification in two groups. 

One group is the boxplot, standing for the statistics of binary accuracy of 45 boosted classifiers 

on each own subtask, noted as 20 boxes in each different dataset setting. The other is the final 

AVA in each dataset, noted as solid circles ‘●’. 

From Fig 2.15, it can be found obviously that among all 20 datasets, the median level of the 

binary accuracy, marked as ‘-’, greatly differs with the lower bound, marked as outliers ‘+’. In 

contrast, the final AVA accuracy marked as solid circle ‘●’ is quite approximate with the lower 

bound among many datasets and some of them even overlap together.  

Since the lower bound of the binary accuracy means the boosted classifier with the worst 

performance on its own subtask, it can be considered that the weakest boosted classifier affects 

the final AVA accuracy. 

With the criterion that grow column of the weakest boosted classifier firstly within each 

heuristic search step, we propose the ‘worst-care’ selecting column reduction algorithm in this 

search. 

The detailed procedures are as following Fig 2.16. 

At first, the initialization procedures are similar with the previous greedy search algorithm. 

In the while loop, a temporal array to record the binary accuracy on 45 binary subtasks is 

necessary. Since the criterion has been changed to select the minimum (worst) rather than the 

maximum, the binary accuracy array should be initialized to ones, rather than zeros in the 

// Worst-care selecting 

input: colprn  

output: colwc, accfinal  

// init 

1.  colwc, accfinal, iter = init(colprn) 

2.  while sum(colwc) < sum(colprn) 

3.    iter = iter + 1 

4.    accbinary = ones(1,45) 

5.    for i from 1 to 45 

6.      if colwc[i] < colprn[i] + 1 

7.        colwc[i] = colwc[i] + 1 

8.        accbinary = calcAccBin(colwc) 

9.        colwc[i] = colwc[i] – 1 

10.     endif 

11.   endfor 

12.   imin = argmin(accbinary) 

13.   colwc[imin] = colwc[imin] + 1 

14.   accfinal[iter] = calcAccAVA(colwc) 

15. endwhile 

Fig 2.16 worst-care column reduction method 

procedures 
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procedures of greedy search. Then calculate the binary accuracy of 45 subtasks by function 

‘calcBinAcc()’. Finally, select the boosted classifier with the minimal binary accuracy and grow 

one column to it, recording the final AVA accuracy change in this step. Similarly, the stop 

condition is the same as previous. 

Through applying the proposed worst-care column reduction algorithm to the model after 

being pruned, the similar accuracy result on D(11,0) is as following Fig 2.17 and Fig 2.18. 

Fig 2.17 Accuracy by iteration of worst-care 

Fig 2.18 Column number for each boosted classifier by worst-care 
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And shows the result of column number of each boosted classifier by worst-care. 

The detailed column growing process by steps of worst-care processing is as following Fig 

2.19. 

 

 

Since the searching rule is quite simple, the growing process becomes much more stable 

compared to the greedy search process. What’s more, within the worst-care selecting 

Fig 2.19 Column growing process (worst-care) 
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optimization process, solving global optimal state is avoided, leading to a quite stable process 

and difficult to be trapped in the local optima like greedy search. In addition, only the binary 

accuracy history of each boosted classifiers necessary in each step, meaning that the historic 

training data from the previous training phase can be used again, so that the whole process can 

be quite fast as about 14 seconds which is about just 5% of greedy search’s processing time. 

From the accuracy by growing columns in Fig 2.18, it can be found that the worst-care 

processed model has always a higher accuracy than the pruned model marked as ‘○’ and at its 

left top position at most of the steps, meaning that with the same number of columns the model 

processed by worst-care selecting optimization always has better performance or it can reach a 

similar performance as the pruned model with less columns. Compared to the result of greedy 

search, the result of worst-care is with less vibration and approximate to but better than the 

pruned result, showing the stability of the processing. 

2.6 Experiments and results 

In the previous chapter, the two-step column reduction processing method was proposed, 

namely the subtask adaptive column pruning as the first step processing and two kinds of 

heuristic search, greedy search and worst-care selecting optimization algorithms as the second 

step processing.  

In this chapter, the simulation experiments to evaluate the effects of proposed column 

reduction algorithms and the results will be given. 

2.7 Experiment settings 

The target of this experiment is to validate the column reduction effect of the proposed 

algorithms and observe the effect to the performance of the model at the same time. 
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The detailed diagram for the experiment is as following Fig 2.20. 

The object is the models with conventional implementation, which was introduced in the Fig 

2.20. The models are trained with several groups of datasets, namely the 20 combinations D(S, 

∆𝑉) of down-sampling size S of {11×11, 9×9, 7×7, 5×5} and strengths of variability ∆𝑉 of {0, 

0.05, 0.1, 0.15, 0.2} (V).  

The baseline performance has two metrics, including the final AVA accuracy and the total 

column number of the model. The baseline accuracy is the AVA accuracy of the model on the 

test set when its accuracy on train/valid set reaches the maximum. The baseline column number 

is the total column number as 45×𝑡 when the model reaches the selected baseline accuracy 

controlled by number of boosting iterations 𝑡, i.e., the number of weak classifiers included in 

each boosted classifier. 

During the experiment, subtask adaptive pruning is first to apply to the original model in the 

first step and the responding performance is recorded, which includes AVA accuracy and total 

column number. After being pruned in first step, the model will be processed further through 

proposed heuristic algorithms for the second step, also recording the performance of the 

processed model.  

Finally, there will be 5 groups of performance in total to be compared, including baseline, 

subtask adaptive pruning (1st step), greedy search (2nd step A), fast greedy search (2nd step B) 

Fig 2.20 Experiment diagram 
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and worst-care selecting (2nd step C). 

2.8 Experiment result 

2.8.1 Result of column reduction 

The detailed column reduction result is as following Fig 2.21. 

The x-axis is the different dataset, noted as D(Size, ∆𝑉), as introduced previously. The y-axis 

is the total column number of the model. The bar plot is totally divided into 20 groups referring 

to 20 datasets. Each group has 5 bars standing for different performance of model processed by 

the method by the legend labeled as ‘Baseline’, ‘Pruned’, ‘Greedy’, ‘Greedy-fast’ and ‘Worst-

care’ from the left to right. 

From the result in Fig 2.21, it can be found that in each group of result the bars on the right 

are totally with less column number compared to the result of the Baseline, which is the first 

bar on the left. In addition, the model after being second step is with further reduced column 

number, meaning that the proposed two-step processing method reaches the effect of reducing 

columns through the combined processing. 

 

Fig 2.21 Detailed result of column reduction 
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For the representative result, the percentage of column reduction is also given as following 

Fig 2.22. 

From Fig 2.22 which is the boxplot of the percentage of reduction among the 20 groups of 

experiment for proposed 4 processing methods, the effect of reduction can be more obvious. In 

the first step, through subtask adaptive pruning, the column number can be reduced by 11.50% 

in average. In the second step, different results are reached through different methods.  

Through greedy and fast greedy search, the column number can be reduced further by 3.23% 

and 5.14% in average, additive to the result of first step. Through worst-care selecting algorithm, 

the column number can be reduced further by 5.49% in average, which comes to be the best 

processing method among all in average.  

However, it should also be noticed that the upper bounds and range of the results by different 

methods are also different. The fast greedy search reaches the largest reduction range and the 

second largest is greedy search, while worst-care selecting is just over the range of subtask 

adaptive pruning slightly, which is with the minimal range.  

It is considered that greedy search type methods are with the target of maximal final accuracy 

in each search step and can reach quite good results on some of the datasets but also easily 

trapped into local optimal state, resulting in results not so good on the other datasets. Meanwhile, 

the weakest boosted classifier first based worst-care selecting method can be quite stable and 

effective without considering the optimal value of final AVA accuracy, though it cannot reach 

extremely good results on most of the datasets. 

Therefore, it is commended that select the most effective processing method(s) for the actual 

Fig 2.22 Percentage of columns reduction  
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data in practice, in order to reach the best effect for column reduction. 

 

2.8.2 Change of final accuracy  

The detailed result for comparison of final AVA accuracy is as following Fig 2.23 

With similar x-axis to the detailed result of column reduction, Fig 2.23 shows the result of 

accuracy as the y-axis. It can be found that the accuracy of the model processed by proposed 

methods has no obvious change, compared to the baseline performance. 

For a more simplified comparing, refer to Fig 2.24. 

Fig 2.23 Detailed result of final AVA accuracy 

Fig 2.24 Accuracy difference 
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From Fig 2.24, it can be found that most of models after being column reduction processing 

get slight accuracy loss. The accuracy loss of model processed by subtask adaptive pruning and 

worst-care selecting is about 0.28% in average and by greedy and fast greedy search is 0.575% 

and 0.525% in average, respectively. Thus, it is recommended to choose the proper processing 

methods according to the minimal demand of accuracy in practical application. 

 

2.9 Conclusion 

Starting with the redundant columns existed in the conventional implemented model, this 

chapter explored a two-step column reduction processing method for the in-memory machine 

learning classifier from the point of heuristic searching algorithm.  

After applying subtask adaptive column pruning to the original model as the first step, based 

on maximal accuracy gains first greedy search and weakest boosted classifier first selecting 

(‘worst-care’), this research proposed 2 kinds of column reduction algorithms in the second step, 

achieving the target of reducing the columns of model with minimal performance loss.  

This work mainly researched the SRAM based in-memory machine learning classifier and 

the responding column reduction algorithms. With the conventional implementation of in-

memory classifier reaching great energy saving and available accuracy, hardware errors and 

nonlinear noises existed in the bit cells as well as the time-dependent variability makes the 

model need more memory arrays to achieve available performance, which calls the demand on 

the methods to reduce the impact of variability as well as the number of memory column arrays. 

The conventional implementation for in-memory machine learning classifier was researched 

and simulated with the MNIST dataset, where 1-Bit Constraint-resolution-regression-based 

error adaptive classifier boosting algorithm is employed to implement in 6T SRAM. The effect 

of the classifier was verified. 

In order to achieve a further level of energy saving, a two-step processing method was 

proposed. First, the subtask adaptive pruning process was proposed based on the different 

difficulty between the subtasks. Then, from the view of heuristic search, maximal accuracy 

gains first criterion based greedy search and fast greedy search were proposed. Based on 

weakest boosted classifier first criterion, the worst-care selecting algorithm was proposed. With 

comparison of the accuracy by proposed processing, some typical results of experiment verified 

the effect of column reduction by proposed algorithms. 
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Chapter 3 Improving stability and accuracy of low precision neural 

network 

Abstract 

Binary neural networks (BNNs) have drawn much attention because of the most promising 

techniques to meet the desired memory footprint and inference speed requirements. However, 

they still suffer from the severe intrinsic instability of the error convergence, resulting in 

increase in prediction error and its standard deviation, which is mostly caused by the inherently 

poor representation with only two possible values of -1 and +1. In this work, we have proposed 

a cost-aware layer-wise ensemble method to address the above issue without incurring any 

excessive costs, which is characterized by 1) layer-wise bagging, 2) cost-aware layer selection 

for the bagging. One of the experimental results has shown that the proposed method reduces 

the error and its standard deviation by 15% and 54% on CIFAR-10, respectively, compared to 

the BNN serving as a baseline.  

This chapter demonstrated and discussed such error reduction and stability performance with 

high versatility based on the comparison results under the various cases of combinations of the 

network base model with the proposed and the state-of-the-art prior techniques while changing 

the network sizes and datasets of CIFAR-10, SVHN, and MNIST for the evaluation. 

3.1 Introduction 

Nowadays, deep neural networks (DNNs) are being widely used for many applications such 

as computer vision, speech recognition, natural language processing, neural machine translation, 

etc., because of powerful abilities of feature extraction and knowledge representation. However, 

energy-hungry devices like high-performance GPU are needed to train the DNNs with a large 

number of parameters whose data type is 32-bit floating-point precision (float32). Unfortunately, 

this has become a hurdle to deploy the deep neural networks to mobile devices and low-cost 

embedded systems because such systems cannot afford to exploit the power and cost hungry 

GPU for their applications. It could be a critical bottleneck to deploy the AI with DNN into the 

cost and power-sensitive fields like the internet of things (IoT) until their power and cost 

requirements have been much alleviated by taking a different approach to the DNNs. 

Recently, to address the above issue, the network quantization techniques were proposed to 

meet the requirements for saving energy and memory cost that is critical in mobile devices and 

embedded systems. The quantization technique allows relaxing the precision requirements of 

the network parameters from the float32 to lower integer precision like 8-bit, 4-bit, 2-bit, and 

even binary (1-bit) while suppressing the accuracy degradation to an allowable level. It can 

contribute to reducing the required computing resources and the memory footprint to complete 

the training within a practical time. Courbariaux et al.[60] proposed a binary neural network 
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(BNN) which uses the binary precision (-1/+1) for expressing the values of weight and 

activation.  

The outline of the training procedure for the BNN model is shown in Fig. 3.1. 

 

In whole process, only Bt is expressed by a binary precision, and others (Wt, Gt, Losses, Loss) 

use the float32. The Bt is binarized data of the Wt. The current Wt and gradient Gt are used to 

generate the next weight Wt+1. The gradient Gt is given based on the mean value Loss and the 

current Bt. The whole process is repeated to reduce the value of the Loss. It is noteworthy that 

the conventional floating-point operations in the forward propagation can be replaced by bit-

wise operations thanks to using binarized parameters. 

For example, the dot product of two binary vectors can be computed by XNOR logic as 

follows: 

𝐚 ∙ 𝐛 = 𝑏𝑖𝑡𝑐𝑜𝑢𝑛𝑡(XNOR(𝐚, 𝐛)) 

where the bitcount is a function that counts the number of 1 in a binary vector. Since the bitwise 

operations are basically carried out by only XNOR logic instead of the arithmetic logic unit 

(ALU), it consumes much less energy than the full-precision neural networks. Thanks to the 

binarization of weights and fewer multiplications, the BNN model achieved about 32 times 

memory savings and 7 times run-time speed-ups[60]. 

Although the BNN achieved a big success in the run-time speedups in the forward stage while 

reducing the memory and the energy consumption, the error and its standard deviation of the 

predictions are increased as unacceptable side effects, which is mainly caused by the intrinsic 

risk factor of poor representation ability with (-1/+1). Thus, the various related works, including 

the state-of-the-art paper BENN[61] that used ensemble techniques to address this issue, were 

proposed. We will discuss the techniques of those papers in the following Section. 

We will newly propose the cost-aware layer-wise bagging technique in this work. To the best 

of our knowledge, this is the first work to propose and discuss the following things.  

Fig. 3.1 The training procedure for the BNN model 
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1. Cost-aware layer-wise bagging method to address the cost issue faced by the BENN. 

2. Smart layer selection for deploying the layer-wise bagging, which is characterized by cost-

aware strategy for using the layer-wise bagging. Thanks to this tactic, the number of additional 

parameters is suppressed within several percent, which is much fewer than the case for the 

BENN (several hundred percent). 

3. Breakdown analysis of the uniqueness of the binary filter patterns generated by the training 

which is used for evaluating the expressive efficiency of the filter (a better representation ability 

than other related works will be demonstrated based on its comparison results between the 

proposed layer-wise bagging and the conventional techniques). 

In addition to the above, this work will discuss the advantages over other state-of-the-art 

counterparts with higher versatility by comparing the experimental results under the various 

cases of combinations of the network base models with the proposed and the most recent 

techniques while changing the network sizes and datasets for the evaluations. 

The rest of this chapter is organized as follows. Section 2 reviews quantized neural networks 

and ensemble methods, followed by discussing the instability issue of BNN in Sec. 3. The 

proposed method is introduced and compared with conventional techniques in Sec. 4, and the 

concerns and its handling for the additional cost are explained in Sec. 5. We demonstrate and 

discuss the experiment results in Sec. 6, followed by the conclusion of this chapter in Sec. 7. 

3.2 Related works 

3.2.1 Quantized neural networks 

There are many works focusing on network quantization techniques in recent years. Rastegari 

et al.[62] proposed XNOR-Net which is the modified version of the BNN and achieved an 

improved result on the ImageNet dataset. But it still uses the full precision (float32) in the first 

and last layers of the network. Miyashita et al.[63] proposed a method to quantize the 

activations/weights in logarithmic representation. They quantized the gradients with 6-bit 

precision without any significant accuracy loss on the CIFAR-10 dataset. Zhou et al.[64] 

proposed DoReFa-net which also employed logarithmic representations for the weight (1-bit), 

activation (2-bit) and the gradient (6-bit). It achieved a 46.1% top-1 classification accuracy on 

the ImageNet dataset. Merolla et al.[65] applied weight binarization and several different kinds 

of noises to the DNN and demonstrated the robustness of the DNN networks to the various 

distortions. Bulat et al.[66] proposed to fuse the activation and weight scaling factors into a 

single one that is learned discriminatively via backpropagation. They also explored different 

ways of constructing the scaling factors and demonstrated the accuracy gain of up to 6% on the 

ImageNet dataset using ResNet-18. Simons et al.[67] gave a tutorial of the general BNN 

methodology and reviewed various contributions, implementations, and applications of the 

BNN models.  
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To deal with the severe accuracy degradation of BNNs, Lin et al.[68] proposed ABC-Net 

which employs the linear combinations of the multiple binary weight bases to approximate the 

original high-precision weights and different activation functions by using the shift parameter. 

It reduces the loss of input information, achieving a 65.0% top-1 accuracy on the ImageNet 

dataset which is competitive performance compared to the full precision counterpart. 

In the following sections, we will discuss how the ensemble learning method can contribute 

to further error reduction compared with the ABC-Net. 

3.2.2 Ensemble methods 

One of the well-known techniques for prediction accuracy improvement is ensemble learning 

which uses multiple weak classifiers and combines their output decisions. The two well-known 

ensemble learning techniques are boosting and bootstrap aggregating which are abbreviated as 

bagging[69][70].  

The boosting in fact refers to a family of algorithms that consists of multiple weak learners 

and strong learners. Each output of the weak learners is multiplied with different weight and all 

outputs are aggregated to the final strong learner. Using different weighting rules for training 

samples and hypothesis has led to many variations of boosting algorithm such as AdaBoost and 

LogitBoost[70] The bagging is trained from independent and identically distributed (IID) 

training samples by averaging or voting the outputs of weak classifiers. In general, if the goal 

is to get N weak classifiers, N training phases are necessary, while in each training phase every 

single weak classifier is trained with only approximate 63.2% of samples randomly sampled 

with replacement from the whole training set. 

Recently, these ensemble techniques have come to be applied to the deep neural networks 

instead of the conventional decision tree models. As a noteworthy work, the Binary ensemble 

neural network (BENN) was proposed to solve the accuracy degradation which is 

predominantly caused by intrinsic instability issue of the training of the BNN. However, since 

the BENN applies the ensemble method to the entire network, an intolerable additional cost of 

several times larger numbers of parameters for representing the whole network model are 

unfortunately incurred, which is not an acceptable drawback for the low power and low-cost 

systems. 

In order to solve this issue, we newly proposed the cost-aware layer-wise bagging technique. 

This is characterized by the two things of 1) layer-wise bagging and 2) cost-aware selection of 

the applied layers for bagging (only to the first and last layers). Thanks to the cost-aware layer-

wise bagging, the increase of the number of additional parameters for the layer-wise bagging is 

to suppress to less than 2%, which is much smaller than the case for the BENN. We will explain 

this matter further in detail based on the actual example data in Sec. 5. 
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3.3 Instability of Binary Neural Network 

One of the critical problems for the BNN training process is instability which affects the 

training time as well as the error convergence. The comparisons of validation error convergence 

curves and its standard deviation between the BNN and the full precision (FP) network for the 

CIFAR-10 image classification task are shown in Fig. 3.2a and b, respectively.   

The error convergence curves from epoch 50 and its standard deviation in the last 30 epochs 

are shown in Fig. 3.2a and b, respectively. It can be seen that the error convergence curve for 

the BNN is more fluctuated and its standard deviation is much larger than the FP network. 

There are mainly two reasons for having a higher variation of the prediction error rate in the 

training process of BNN. 

1) Significantly reduced numeric precision of the back-propagation due to the quantized 

weights, which makes the training accuracy worsen.  

2) The increased errors of the quantized activations calculated from the propagated gradients 

compared to the values for the FP network. 

 

                   (a)                                     (b) 

Fig. 3.2 Comparisons of (a) error convergence curves and (b) its standard deviation between 

the BNN and full-precision (float32) network on the CIFAR-10 dataset. 
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3.4 Layer-wise ensemble   

The Fig. 3.3 shows the structure comparisons among a single binarized layer, linear 

combination, and proposed layer-wise ensemble method, Layer Bagging. 

The structure of a single binarized layer used in the BNN is shown in Fig. 3.3a, which is used 

for a binarized convolutional layer or binarized fully-connected layer. In the forward 

propagation, the input batch and binarized weight B generate the output batch. In the backward 

propagation, the full-precision weight W is updated based on the full-precision gradient value 

of the avgLoss that is the mean value of the losses of all the samples in the minibatch. The 

binarized weight B is given by binarizing the full precision W as shown in the detailed 

(a) (b) 

(c) 

Fig. 3.3 Comparisons of the structures among the three methods (a) single binarized layer, (b) 

linear combination, and (c) proposed Layer Bagging. 
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procedures in Fig. 3.1. 

The set of the weight {B,W} for the single binarized layer is changed to 

{B1,W1},{B2,W2},{B3,W3} for the multiple binarized layer bases, as shown in Fig. 3.3. In the 

forward propagation, the outputs of multiple layer bases are generated in the multiple layer 

bases for the same input batch, which are weighted with the multiple trainable full-precision 

scaling factors α1, α2, α3 and then summed up. In the backward propagation, it has the same 

process as the case for a single binarized layer. 

The Fig. 3.3c shows the structure of the proposed Layer Bagging method. In the backward 

propagation, we insert a bootstrap sampling process to generate independent sampledLosses1, 

sampledLosses2, sampledLosses3 of different layer bases and use the mean values 

(avgSampledLosses1, avgSampledLosses2, avgSampledLosses3) to generate the gradients 

independently which are then used to update corresponding W and α. In the forward propagation, 

it has the same process as the linear combination method. 

In the following subsections, we will explain the linear combination method more in detail 

which is proposed in the ABC-Net followed by elaborating our proposed Layer Bagging method 

so that the differences between the two can be made clear. 

3.4.1 Linear combination 

The following shows the concept of the training procedure for the linear combination method. 

The outline of the process is similar to the conventional training procedure for the BNN. The 

key difference from the conventional BNN is to employ linear combination method in the 

multiple sets of parameters {𝑊1
𝑡, … ,𝑊𝑛

𝑡}, {𝑊1
𝑡+1, … ,𝑊𝑛

𝑡+1}, {𝐵1
𝑡, … , 𝐵𝑛

𝑡}, {𝐺1
𝑡, … , 𝐺𝑛

𝑡}  for the 

corresponding multiple binarized layer bases, as shown in Fig. 3.4. 

Fig. 3.4 The training procedure for the linear combination method. 
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The key features of the linear combination are as follows: 

1) Multiple binarized layers (𝑛  layer bases in total) are randomly initialized which have 

different initial values but share the same parameter settings (e.g., input channels, output 

channels, kernel size, and stride) for convolutional layer, or the number of input features, output 

channels for the fully-connected layer. 

2) Since the multiple layer bases are sharing the same layer setting of the initialization among 

them, the same input comes to be used in each layer of the same linear combination group. 

Independent training of the weights for the multiple layer bases generates more variable binary 

representations than the case for a single binarized layer. 

3) The accuracy of the final output becomes better and more stable, because the outputs from 

multiple layer bases are aggregated and averaged. 

In the forward part of Algorithm Alg. 3.1, 𝑛, 𝐵 and 𝑋 denote the number of layer bases, 

the binary weights of the convolutional or fully-connected layer, and the input batch, 

respectively. 𝐻𝑖 and the final output ℎ are given by 𝑋 and weight 𝐵𝑖 of each layer base and 

binarizing the aggregation of the product of all 𝐻𝑖  and full-precision scaling factor 𝛼𝑖 , 

respectively.  

In the backward part, 𝑊  represents the full precision counterpart of the corresponding 

binary weights. 𝑙𝑜𝑠𝑠𝑒𝑠 is a list of loss of each sample in an input batch. 𝐺𝑊𝑖
𝑡 , 𝐺𝛼𝑖

𝑡  denote the 

// Forward of linear combination module 

Input: B; α; X; n; 

Output: h; 

for 𝑖 ← 1 to n do 

  𝐻𝑖 ← 𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝐵𝑖, 𝑋)  

end 

ℎ ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒(∑ 𝐻𝑖 ∙ 𝛼𝑖
𝑛
𝑖=1 )  

// Backward of linear combination module 

Input: W; B; α; losses; n; 

Output: W; B; α; 

𝑎𝑣𝑔𝐿𝑜𝑠𝑠 ← 𝑚𝑒𝑎𝑛(𝑙𝑜𝑠𝑠𝑒𝑠)  

for 𝑖 ← 1 to 𝑛 do 

  𝐺𝑊𝑖
𝑡 , 𝐺𝛼𝑖

𝑡 ← 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑎𝑣𝑔𝐿𝑜𝑠𝑠, 𝐵𝑖
𝑡, 𝛼𝑖

𝑡) 

  𝑊𝑖
𝑡+1 ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑊𝑖

𝑡, 𝐺𝑊𝑖
𝑡) 

  𝐵𝑖
𝑡+1 ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒(𝑊𝑖

𝑡+1) 

  𝛼𝑖
𝑡+1 ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝛼𝑖

𝑡, 𝐺𝛼𝑖
𝑡) 

end 

Alg. 3.1 Linear combination pseudo code 
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full precision gradient for the corresponding weight and the activation calculated by 𝑎𝑣𝑔𝐿𝑜𝑠𝑠 

(mean value of 𝑙𝑜𝑠𝑠𝑒𝑠 ), binary weight 𝐵  and 𝛼  at current iteration 𝑡 . 𝑊 , 𝐵  and 𝛼  are 

updated with current variables 𝑊𝑖
𝑡, 𝐵𝑖

𝑡, 𝛼𝑖
𝑡 and gradients for 𝐺𝑊𝑖

𝑡  and 𝐺𝛼𝑖
𝑡 . 

3.4.2 Layer bagging 

To reduce the error rate and its standard deviation more than the linear combination (LC) 

method, we propose a layer-wise ensemble method called ''Layer Bagging''. The 'LC' method 

has an obvious drawback to the cost of the network because many identical convolutional filters 

are unfortunately generated for the different binary layer bases. The identical filters (whose 

pattern with +1/-1 is completely the same) of the total accounts for over 30% based on our 

experimental results. As a result, it leads to a redundant consumption of the filters, resulting in 

a decrease in the usage for the model representation. 

We suppose the key reason why the 'LC' is prone to generate the same patterns in the filter is 

based on the combination of the two constraints: 1) limited combinations of +1/-1 due to the 

binarization and 2) using the same input to the different layer bases. Thus, in order to address 

this fundamental issue, the bagging algorithm has been introduced in this work. This allows 

each weak learner for the bagging to have more independent variables which can contribute to 

reducing the error while suppressing its standard deviation. The Fig. 3.5 shows the training 

procedure for the proposed Layer Bagging method. 

Based on the 'LC' method shown in Fig, we mainly insert a bootstrap sampling part into the 

procedure. The bootstrap sampling is applied on the sample-wise 𝑙𝑜𝑠𝑠𝑒𝑠  multiple times to 

generate the independent subsets 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠1, … , 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠𝑛 . And the 

corresponding mean values 𝑙1, … , 𝑙𝑛 are used to generate 𝐺1
𝑡 , … ,𝐺𝑛

𝑡
. 

Fig. 3.5 The training procedure for the Layer Bagging method. 
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The pseudo code of the proposed Layer Bagging method is shown in Algorithm Alg. 3.2. In 

the backward part, 𝑠𝑟 (we use 𝑠𝑟 = 0.632 in this work), representing the sample ratio of the 

losses of the input samples, is used in the function 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 to sample 𝑙𝑜𝑠𝑠𝑒𝑠 

randomly with replacement to get 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠 . The mean value 𝑎𝑣𝑔𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠  is 

used to update the weight and 𝛼. The forward part is the same as the forward part of the linear 

combination. 

Here we also propose a general backward propagation process for the whole model to employ 

the proposed Layer Bagging method in Algorithm Alg. 3.3. There are several processes in 

Algorithm. 𝐹𝑟𝑒𝑒𝑧𝑒𝐴𝑙𝑙𝑀𝑜𝑑𝑢𝑙𝑒𝑠 is used to disable the parameter updating of the whole model. 

𝑈𝑛𝑓𝑟𝑒𝑒𝑧𝑒𝐵𝑎𝑔𝑔𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑖) and 𝐹𝑟𝑒𝑒𝑧𝑒𝐵𝑎𝑔𝑔𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑖)  are used to enable 

and disable the parameter updating of 𝑖-th layer base of the Layer Bagging modules in the 

model, respectively. Such two processes are used to preserve independent parameter updating 

with different 𝑎𝑣𝑔𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠  in different layer bases of the Layer Bagging modules. 

𝑈𝑛𝑓𝑟𝑒𝑒𝑧𝑒𝑁𝑜𝑛𝐵𝑎𝑔𝑔𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒𝑠 is used to enable the parameter updating of the modules other 

than the Layer Bagging module in the model. 

// Forward of layer bagging module 

Input: B; α; X; n; 

Output: h; 

for 𝑖 ← 1 to n do 

  𝐻𝑖 ← 𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝐵𝑖, 𝑋)  

end 

ℎ ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒(∑ 𝐻𝑖 ∙ 𝛼𝑖
𝑛
𝑖=1 )  

// Backward of layer bagging module 

Input: W; B; α; losses; n; 

Output: W; B; α; 

for 𝑖 ← 1 to 𝑛 do 

  𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠 ← 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑙𝑜𝑠𝑠𝑒𝑠, 𝑠𝑟)  

  𝑎𝑣𝑔𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠 ← 𝑚𝑒𝑎𝑛(𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠)  

  𝐺𝑊𝑖
𝑡 , 𝐺𝛼𝑖

𝑡 ← 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑎𝑣𝑔𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠, 𝐵𝑖
𝑡, 𝛼𝑖

𝑡) 

  𝑊𝑖
𝑡+1 ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑊𝑖

𝑡, 𝐺𝑊𝑖
𝑡) 

  𝐵𝑖
𝑡+1 ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒(𝑊𝑖

𝑡+1) 

  𝛼𝑖
𝑡+1 ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝛼𝑖

𝑡, 𝐺𝛼𝑖
𝑡) 

end 

Alg. 3.2 Layer Bagging pseudo code 
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3.5 Additional Cost Concern 

To apply the ensemble method to the entire network at the cost of the required much more 

training time and memory footprint than a single network is not a practical way for the low 

power and low-cost systems. For example, the conventionally proposed BENN (which relying 

on whole network level 5× ensembles) brings about an intolerable increase (by 400%) in the 

number of parameters. Thus, we newly proposed the Layer Bagging technique to avoid such 

kind of unbearable side effect, which actually can suppress the overhead (increased number of 

parameters) to less than 1.7% for a VGG-like CNN model used in this work whose number of 

parameters is shown in following table. 

Table 3 Number of parameters of a VGG-like CNN model used in this work. 

Layer block # of parameters 

conv3x3-128 (input) (3*3*3)*128 +(3*3*128)*128=150,912 

conv3x3-128 (3*3*128)*256 +(3*3*256)*256=884,736 

conv3x3-128 (3*3*256)*512 +(3*3*512)*512=3,538,944 

fc1 8*8*512*1024=33,554,432 

fc2 1024*1024=1,048,576 

fc3 (output) 1024*10=10,240 

Total 39,187,840 

Since the proposed Layer Bagging technique is applied only to the first and the last layers 

Input: model; losses; n; sr; 

Output: model; 

𝑚𝑜𝑑𝑒𝑙 ← 𝐹𝑟𝑒𝑒𝑧𝑒𝐴𝑙𝑙𝑀𝑜𝑑𝑢𝑙𝑒𝑠(𝑚𝑜𝑑𝑒𝑙)  

for 𝑖 ← 1 to 𝑛 do 

  𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠 ← 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑙𝑜𝑠𝑠𝑒𝑠, 𝑠𝑟)  

  𝑎𝑣𝑔𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠 ← 𝑚𝑒𝑎𝑛(𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠𝑒𝑠)  

  𝑚𝑜𝑑𝑒𝑙 ← 𝑈𝑛𝑓𝑟𝑒𝑒𝑧𝑒𝐵𝑎𝑔𝑔𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑖) 

  𝑚𝑜𝑑𝑒𝑙 ← 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑚𝑜𝑑𝑒𝑙, 𝑎𝑣𝑔𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐿𝑜𝑠𝑠) 

  𝑚𝑜𝑑𝑒𝑙 ← 𝐹𝑟𝑒𝑒𝑧𝑒𝐵𝑎𝑔𝑔𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑖) 

end 

𝑚𝑜𝑑𝑒𝑙 ← 𝑈𝑛𝑓𝑟𝑒𝑒𝑧𝑒𝑁𝑜𝑛𝐵𝑎𝑔𝑔𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒𝑠(𝑚𝑜𝑑𝑒𝑙)  

𝑎𝑣𝑔𝐿𝑜𝑠𝑠 ← 𝑚𝑒𝑎𝑛(𝑙𝑜𝑠𝑠𝑒𝑠)  

𝑚𝑜𝑑𝑒𝑙 ← 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑎𝑣𝑔𝐿𝑜𝑠𝑠)  

 

 Alg. 3.3 General backward process of training with Layer Bagging 
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unlike the BENN (which applies to the whole layers), the overhead can be negligibly small 

which is the prerequisite requirement for a low power and low-cost system. In addition to the 

above, we will explain the reason why the first and the last layers were chosen for applying the 

bagging technique as follows: 1) the first and last layers have very few parameter numbers than 

others (see Table 3), 2) more sensitive to the accuracy degradation as the related work 

mentioned. According to the related work, many BNN works use the higher precision only for 

the first and last layers than other layers to avoid a significant accuracy degradation. Based on 

such kind of background, we finally decided to employ the proposed Layer Bagging method 

only to the first and last layers instead of using a higher precision like float32. To the best of 

our knowledge, this is the first work to apply the layer bagging while almost avoiding the 

additional network overhead. 

3.6 Experiments and results 

We conducted several image classification experiments mainly based on the CIFAR-10 

dataset, which is a common benchmark dataset used for the image classification task. The 

dataset consists of 60k (train/test: 50k/10k) 32 by 32 color images in 10 classes with 6000 

images in each class. The program for the experiments is implemented in PyTorch and the 

program is executed on Ubuntu 16.04 with the NVidia GeForce GTX 1080 Ti graphic card.  

We also conducted the experiments based on other datasets of SVHN and MNIST and 

different base model of XNOR-Net++, so that we can evaluate the advantages from the 

proposed technique with versatility. 

To make a fair comparison, the similar setups and model architecture compared to the original 

BNN paper are used in this experiment as much as possible. 

3.6.1 Experiment settings 

The preprocessing part of the experiment simply used random crop, random horizontal flip, 

and normalizing with image net statistics. The basic binary CNN model architecture used in 

this paper is shown in Fig. 3.6. 

Fig. 3.6 Architecture of the basic CNN model used in this work. 
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In Fig. 3.6, "conv3×3" represents a 3 by 3 convolution layer with batch normalization layer 

and ReLU activation and "pool" is short for 2 by 2 max-pooling. "2L256C" is short for a 2-layer 

block of 256-channel convolutional in each layer. 

The CNN model architecture is mainly composed of three convolution layer blocks (each 

block consists of two layers, i.e., 2-2-2) followed by three fully-connected layers with the output 

feature numbers of 1024-1024-10 for the classification. To compare the errors among the 

networks in various sizes, whose number of layers is different, between the proposed and the 

conventional methods.  

we used four different combinations of the number of convolution layer blocks and the 

number of fully-connected layers to '2-2-2-3' (standard), '1-2-2-3', '1-1-2-3', and '1-1-1-3', while 

keeping other parts unchanged. 

In order to discuss the dependencies on some conditions, we conducted the experiments while 

changing the conditions as shown in following table. The conditions can be varied by changing 

the combination of 1) using the method from {'BNN', 'LC-3', 'LC-5', 'Bag-3', 'Bag-5'}, 2) 

choosing to use one technique from the linear combination and Layer Bagging or not using each 

technique at all. Therefore, there are results for the 4*5=20 combinations in total. 

Table 4 Definitions for various methods (BNN, LC-3, Bag-3, LC-5, and Bag-5). 

Methods # of layer basis If use LC If use Bag 

BNN 1 N/A N/A 

LC-3 3 True False 

Bag-3 3 False True 

LC-5 5 True False 

Bag-5 5 False True 

 

3.6.2 Comparisons with the-state-of-the-art on various conditions 

To highlight the difference in how many identical patterns are being used in the 3×3 

convolutional filters of all different layer bases between the two cases of the linear combination 

and Layer Bagging, the Venn diagrams are shown in Fig. 3.7.  

The comparisons of percentage of each category for ''identical'', ''semi-identical'', and 

''unique'' filters in different layer bases between the 'LC-3' and 'Bag-3' for the '1-1-1-3' network 

is shown in following Table 5. 
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Table 5 Comparisons of percentage of each category for "identical", "semi- identical", and 

"unique" filters in different layer bases between the LC-3 and Bag-3 for the '1-1-1-3' network. 

Methods Identical Semi-identical (2/3 

are identical) 

Unique 

Linear Combination 34% 31% 35% 

Layer Bagging (Ours) 20% 37% 42% 

As for some short-term in the figures, '1-1-1-3' denotes that the architecture of the model is 

composed of the convolutional layer blocks with layer number of 1,1,1 followed by 3 fully-

connected layers, 'LC-3' and 'Bag-3' represent the results for the linear combination with the 

number of bases (=3) and the proposed Layer Bagging method, respectively. 

We took the case of '1-1-1-3' network as an example to visualize the number in the Venn 

diagram. It is found that the identical filters account for over 34% (97/286) of all for the 'LC-3' 

while its number for the 'Bag-3' is suppressed to 20% (67/328). 

The distributions of the percentage of the identical convolutional filters of all four different 

model architectures are compared between 'LC-3' and 'Bag-3', as shown in Fig. 3.8. It is found 

that the number of the identical filters is significantly decreased by employing the proposed 

Layer Bagging method.  

(a)                                    (b) 

Fig. 3.7 The Venn diagrams of the 3×3 convolutional filters in different layer bases of (a) 

linear combination and (b) Layer Bagging from '1-1-1-3' network. 
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The Fig. 3.9(a)-(d) show the moving average curves (moving window=5) of the validation 

Fig. 3.8 Comparison of the distributions of the percentage of identical convolutional filters 

from networks of all architectures ("2-2-2-3", "1-2-2-3", "1-1-2-3", "1-1-1-3") between the 

'LC-3' and 'Bag-3'. 

Fig. 3.9 The moving average of the validation error convergence curves of different network 

architectures (a) "1-1-1-3", (b) "1-1-2-3", (c) "1-2-2-3", and (d) "2-2-2-3". 
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error rate in percentage for the different networks of (a) '1-1-1-3', (b) '1-1-2-3', (c) '1-2-2-3', and 

(d) '2-2-2-3', respectively. 

The five curves in each sub-plot represent the error rates for the different methods, where the 

blue solid curve labeled as 'BNN' and the orange dotted curve labeled as 'LC-3' (3 means the 

number of binarized layer bases is 3) denote for the baseline BNN and the linear combination 

with three bases, respectively. The green dash-dot curve labeled as 'LC-5', the red dashed curve 

labeled as 'Bag-3', and the purple densely dash-dotted curve labeled as 'Bag-5' represents the 

linear combination with 5 bases, the Layer Bagging with 3 bases and the Layer Bagging with 5 

bases, respectively. 

It is obvious from Fig. 3.9 that (1) the error convergence curves for the proposed Layer 

Bagging ('Bag-3', 'Bag-5') are below the error convergence curves of the baseline BNN and the 

linear combination ('LC-3', 'LC-5'), and (2) as the size of the model is getting smaller (from '2-

2-2-3' at the bottom right to '1-1-1-3' at the top left), the difference in error rate is becoming 

larger, and (3) the proposed Layer Bagging method always needs the number of epochs to reach 

the convergence less than those for the BNN and the linear combination method. Based on the 

above observations, it can be said that the proposed Layer Bagging method provides significant 

improvements in the training time cost. 

Table 6 shows the comparisons of the best top-1 classification error rate (%) among the 

proposed Layer Bagging method, linear combination, and the baseline BNN for the different 

network architectures of '1-1-1-3', '1-1-2-3', '1-2-2-3', and '2-2-2-3'. 

It is shown that the error reduction capability of the proposed Layer Bagging method 

outperforms the linear combination and the baseline BNN for the different sizes of the networks. 

Table 6 Comparisons of the validation error rates (%) for the different network architectures 

among the cases of using different methods. 

Methods 1-1-1-3 1-1-2-3 1-2-2-3 2-2-2-3 

BNN 14.88 13.72 12.96 10.66 

BNN with LC-3 13.49 12.41 11.72 10.09 

BNN with LC-5 12.87 12.15 11.19 9.81 

BNN with Bag-3 (Ours) 12.63 10.97 10.88 8.93 

BNN with Bag-5 (Ours) 11.99 11.22 10.65 9.16 

The bar-plot of the error reduction rate in percentage (%) are shown in Fig. 3.10 and compared 

between the proposed Layer Bagging and linear combination method. 

The four bars for each network architecture are divided into the two sets, which show the 

error reduction rates for the linear combination (LC) and the proposed Layer Bagging method 

(Bag) on the left and right sides, respectively. The sets for the 'LC' and 'Bag' consist of 'LC-3' 

and 'LC-5' and 'Bag-3' and 'Bag-5', respectively. The two things can be made clear that (1) the 

'Bag' can reduce the error rate by around 13% to 20% compared to the baseline BNN and its 
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numbers are larger than those for the linear combination method and (2) the error reduction rate 

for a smaller network like '1-1-1-3' is larger than that for a larger network like '2-2-2-3'. 

Since one of the key purposes of this work is to suppress the fluctuation of the error 

convergence curves (i.e., to increase stability in the training process), the standard deviation of 

the error rates across the last 30 epochs (from the epoch of 271 to 300) and its reduction (%) 

(compared to the BNN) are shown in Fig. 3.11 and compared between the proposed Layer 

Bagging and the linear combination method. 

 

Fig. 3.10 Comparisons of the error reduction rate (%) for the different network architectures 

between the linear combination and the proposed Layer Bagging method. 
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It has been made clear from Fig. 3.11 that (1) the proposed Layer Bagging method can reduce 

the standard deviation of the error rates by about 0.1 to 0.13 in absolute value (reduced by about 

29% to 37% from Fig. 3.11b) compared to the baseline BNN, respectively and its reductions 

are larger than those for the linear combination and (2) the reductions are increased as the 

number of layer bases increases. 

In addition to evaluating on the different datasets for improving the versatility of our 

discussions, we also conducted the experiments by using the XNOR-Net++ as the base model 

which is more state-of-the-art than the BNN. The detailed results are summarized in Table 7, 

Table 8, and Table 9.  

 

 

 

 

Fig. 3.11 Comparisons of (a) the standard deviation of the error rates (in last 30 epochs) and 

(b) standard deviation reduction rate (%), among the cases of using different methods. 
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Table 7 Comparisons of the validation error rate and its standard deviation in the last 10% 

epochs on the CIFAR-10 dataset among six different methods. 

Methods Error rates (%) Std. deviation (× 10−2) 

1-1-1-3 2-2-2-3 1-1-1-3 2-2-2-3 

BNN 14.88 10.66 39.88 19.24 

BNN with LC-3 13.49 10.09 30.08 19.28 

BNN with Bag-3 (Ours) 12.63 8.93 18.19 18.75 

XNOR-Net++ 14.09 10.04 30.05 23.95 

XNOR-Net++ with LC-3 (Ours) 12.60 9.32 21.38 15.15 

XNOR-Net++ with Bag-3 (Ours) 12.62 9.12 20.64 19.60 

 

Table 8 Comparisons of the validation error rate and its standard deviation in the last 10% 

epochs on the SVHN dataset among six different methods. 

Methods Error rates (%) Std. deviation (× 10−2) 

1-1-1-3 2-2-2-3 1-1-1-3 2-2-2-3 

BNN 3.58 2.71 35.73 10.02 

BNN with LC-3 3.23 2.58 14.45 6.78 

BNN with Bag-3 (Ours) 3.22 2.61 10.83 6.21 

XNOR-Net++ 3.11 2.28 32.68 7.75 

XNOR-Net++ with LC-3 (Ours) 2.73 2.19 10.96 6.19 

XNOR-Net++ with Bag-3 (Ours) 2.70 2.26 8.69 4.52 

 

Table 9 Comparisons of the validation error rate and its standard deviation in the last 10% 

epochs on the MNIST dataset among six different methods. 

Methods Error rates (%) Std. deviation (× 10−2) 

1-1-1-3 2-2-2-3 1-1-1-3 2-2-2-3 

BNN 0.67 0.58 25.88 25.23 

BNN with LC-3 0.68 0.51 8.84 9.45 

BNN with Bag-3 (Ours) 0.66 0.57 19.25 5.73 

XNOR-Net++ 0.56 0.43 42.27 6.81 

XNOR-Net++ with LC-3 (Ours) 0.55 0.50 58.55 3.64 

XNOR-Net++ with Bag-3 (Ours) 0.52 0.49 6.94 5.92 

The error rate and its standard deviation in the last 10% epochs are compared among the two 

baseline binary models of the BNN and the XNOR-Net++, as shown in Fig. 3.12a and b for the 

'1-1-1-3' network and Fig. 3.12c and d for the '2-2-2-3' network, respectively. 
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The reductions of error rate and its standard deviation for the different datasets of CIFAR-10, 

SVHN, and MNIST compared to the baselines are compared among the four cases when using 

'LC' or 'Bag' for the two baselines of BNN and XNOR-Net++ so that the benefits from the 'Bag' 

than 'LC' can be clear with versatility. 

The results have shown that the proposed 'Bag' has achieved up to 16.23% and 73.41% 

reductions on error rate and its standard deviation, respectively, while the corresponding values 

for 'LC' are stopped within 12.22% and 24.57%, respectively. 

When we take a look at the cases for '1-1-1-3' network on the CIFAR-10 dataset, it is found 

that the proposed 'Bag' reduces the error rate and its standard deviation by 15.12% and 54.39¥%, 

respectively, compared to the baseline of the conventional BNN. 

Regarding the results for the MNIST, the trends of the reductions from the baselines are less 

clear than the CIFAR-10 and SVHN. However, it can be said that 'Bag' provided a more stable 

trend for the reduction than 'LC' because of the two reasons that 1) the only one negative case 

is seen for the 'Bag' in Fig. 3.12 while the three negative cases for the 'LC' and 2) the absolute 

value of the negative value for 'Bag' is smaller than 'LC' under the same condition corresponding 

to the Fig. 3.12b. 
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Fig. 3.12 Comparisons of error reduction rate (%) for (a) "1-1-1-3" and (b) "2-2-2-3" 

networks and its standard deviation reduction rate (%) for (c) "1-1-1-3" and (d) "2-2-2-3" 

networks among the various combinations of the methods and datasets. 
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3.7 Conclusion 

The following points will be summarized including from the discussion to the insights based 

on the experimental results in order to shed light on the contributions of this work: 

1. We revealed its own drawbacks of incurring too few unique patterned filters and too many 

additional parameters for the ABC-Net and the BENN, respectively, which both had drawn great 

attention in recent conferences and papers because it was believed to be the most attractive 

technique for binary neural networks.  

2. We proposed a cost-aware layer-wise bagging technique to address both issues of the ABC-

Net and the BENN. 

3. We demonstrated that the percentage of incurring identical patterns in the filters is reduced 

from over 33% to 20% compared with the ABC-Net. The reductions in the error rate and its 

standard deviation by (10.43% and 31.31%) and (9.16% and 18.16%) for the networks of '1-1-

1-3' and '2-2-2-3' were demonstrated and compared with the case for the state-of-the-art XNOR-

Net++, respectively. We have also shown that the increase of the number of additional 

parameters for the proposed layer-wise bagging is suppressed to less than 2%, which is much 

smaller than the number of 400% for the BENN. We demonstrated that the key to success in 

avoidance of excessive overhead for bagging is to apply the layer-wise bagging only to the first 

and last layers, which is different from the conventional two cases of using float32 precision 

only for both first and last layers and applying the bagging to whole layers. 

4. We compared the two techniques of the linear combination (LC) and the proposed layer 

bagging (Bag) under the same conditions to make clear the reducing trends of the error rate and 

its standard deviation compared with the 'LC'. We conducted the experiments under the various 

combinations of the baseline models of BNN and XNOR-Net++ with the techniques of 'LC' and 

'Bag', datasets of CIFAR-10, SVHN, and MNIST, and different sizes of the network 

architectures of '1-1-1-3', '1-1-2-3', '1-2-2-3', and '2-2-2-3'. As a result, we have confirmed the 

advantages of the proposed 'Bag' compared with the conventional 'LC' with high versatility.  
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Chapter 4 Improving stability of low-precision network training with 

relaxation 

Abstract 

Binary neural networks (BNNs) have been focused by many researchers recently because of 

the most promising techniques to meet the desired memory footprint and inference speed 

requirements. However, not only the inherently poor representation with only two possible 

values of -1 and +1, and the training process with quantization also is an important factor which 

causes them suffered from the severe intrinsic instability of the error convergence, resulting in 

increase in prediction error and its standard deviation.  

In this work, we have proposed a new training procedure with relaxed quantization to address 

the above issue without incurring any excessive costs, which discusses the possibility of 

employing relaxed quantization on both activations and weights. The experimental results have 

shown that the proposed method reduces the error and its standard deviation by 1.71% and 

13.08% on CIFAR-10, respectively, compared to the conventional BNN training method 

serving as a baseline.  

This chapter demonstrated and discussed such error reduction and stability performance with 

high versatility based on the comparison results under the various cases with the proposed and 

the conventional technique while changing the hyper-parameter of relaxation strength, 

optimizer, and using or not using batch normalization technique on the datasets of CIFAR-10 

for the evaluation. 

4.1 Introduction 

Recently, many achievements in the fields like computer vision, speech recognition, and 

natural language processing have been implemented through Deep neural networks (DNNs). 

Therefore, researchers also begin to focus on the deployments of DNNs in the scenes with 

extreme limit of memory and power such as mobile phones and other portable devices with 

power supported by the battery. 

Typical deep neural networks usually need over several megabytes of memory footprint to 

train the 32-bit floating-point weights. Single prediction making also requires billion level 

FLOPs for the DNNs. Therefore, the direct deployment of DNNs on the battery-powered 

devices or other portable equipment is very difficult.  

Quantized neural networks (QNN) employ the low numerical precision (less than 8-bit fixed 

points) weights to train the DNNs. By the QNNs, huge memory footprint can be reduced to 

achieve higher power efficiency with only little performance drop on the prediction accuracy, 

compared with the full precision networks. Furthermore, bitwise calculations employed by the 

QNNs can be greatly accelerated on the optimized hardware at the inference time[71][72]. 
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The training of QNN is simply abstracted as an optimization problem of minimizing some 

empirical risk subject to a set of constraint that characterizes the quantization of weights. Binary 

neural network (BNN), the 1-bit case of QNN, firstly employed a hybrid gradient updating 

policy which achieved impressive improvement on the accuracy performance. Based on BNN, 

more and more modified versions and complicated quantization algorithms including XNOR-

Net, TWN[73], DoReFa-Net, etc. were proposed. BinaryRelax[74] was the most famous one of 

them which employed a novel relaxed quantization approach. BinaryRelax employed a novel 

relaxed quantization approach and achieved impressive accuracy and stable performance for 

Binary Weight Network (BWN), which binarizes the weights but the activations remain full 

precision. However, it has not yet adapted for BNN. Inspired by BinaryRelax, the general 

training procedure for BNN is firstly proposed in this work and detailed comparison between 

baseline BNN and the binary network with proposed relaxed training method in different cases 

via various experiment results. 

4.2 Conventional relaxation technique in the BNN training process 

4.2.1 Quantization 

With the set of quantized weights represented as follows, all weights in the network share a 

single scaling factor[74]. 

𝑄 = ℝ+ × {±𝑞1, . . . , ±𝑞𝑚}
𝑛 

(4.1) 

For 𝑏-bit quantization,  

𝑄 =⋃ℒ𝑖

𝑝

𝑖=1

 

(4.2) 

is the union of 𝑝 distinct one-dimensional subspaces ℒ𝑖 ⊂ ℝ𝑛, 𝑖 = 1,2, . . . , 𝑝, where ℒi =

{𝑠 ∙ 𝐿𝑖: 𝑠 ∈ ℝ}. 

Given a float weight vector 𝑊, its quantization 𝑊𝑄 is basically the projection of 𝑊 onto 

the set 𝑄, which gives rise to the optimization problem  

𝑊𝑄 = argmin
𝑧∈𝑄

‖𝑧 −𝑊‖ = proj𝑄(𝑊) 

(4.3) 

Note that 𝑄 is a non-convex set, then the projection may not be unique. In that case, we just 

assume 𝑊𝑄 is one of them. The above projection/quantization problem can be reformulated as 

(𝑠∗, 𝑄∗) = argmin
𝑠,𝑄

‖𝑠 ∙ 𝑄 −𝑊‖2 ⁡ subject⁡ to⁡ 𝑄 ∈ {±𝑞1, . . . , ±𝑞𝑚}
𝑛 
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(4.4) 

The quantization of 𝑊 is then given by proj𝑄(𝑊) = 𝑠∗ ∙ 𝑄∗. (4.4) becomes a constrained 

K-means clustering problem of one-dimensional points. The centroids are of the form ±(𝑠 ·

𝑞𝑗) with 1 ≤ 𝑗 ≤ 𝑚, and they are determined by a single parameter 𝑠 since 𝑞𝑗 's are fixed. 

For uniform quantization where 𝑞𝑗 = 𝑗 − 1 , these centroids are equi-spaced. Given 𝑠 , the 

assignment of float weights is then governed by 𝑄. So, the problem (4.4) in principle can be 

solved by a variant of Lloyd’s algorithm, which iterates between the assignment step (𝑄-update) 

and centroid update step (𝑠-update).  

However, such procedure is impractical, as the quantization is needed in every iteration of 

training. It has been shown that the closed form (exact) solution of (4.4) can be computed at 

𝑂(𝑛) complexity for binarization where 𝑄 ∈ {±1}𝑛: 

𝑠∗ =
‖𝑊𝑄‖1
𝑛

, 𝑄𝑖
∗ {

1⁡ if⁡ 𝑊𝑖 ≥ 0
−1⁡ otherwise.

 

(4.5) 

In the case of ternarization where 𝑄 ∈ {0,±1}𝑛:  

𝑡∗ = argmax
1≤𝑡≤𝑛

‖𝑊[𝑡]‖1
2

𝑡
, 𝑠∗ =

‖𝑊[𝑡∗]‖1
𝑡∗

, 𝑄∗ = sign(𝑊[𝑡∗]), 

(4.6) 

where 𝑊[𝑡∗] ∈ ℝ𝑛 keeps the 𝑡 largest component in magnitude of 𝑊, while zeroing out the 

others. For quantization with wider bit-width (𝑏 > 2), accurately solutions of (4.4) becomes 

computationally intractable. Empirical formulas have thus been proposed for an approximate 

quantized solution, and they turn out to be sufficient for practical use[75].  

4.2.2 Relaxed quantization 

Let us begin with the alternative form of DNNs quantization problem  

min
𝑊𝑄∈ℝ𝑛

𝑓(𝑊𝑄) +
𝜆

2
dist(𝑊𝑄, 𝑄)

2 

(4.7) 

where 𝜆 > 0 is the regularization parameter. 

Based on the BNN gradient update policy, a two-line solver for the minimization problem of 

(4.7) can be expressed as follows. 

{

𝑊𝑘+1 = 𝑊𝑘 − 𝛾𝑘∇𝑓𝑘(𝑊𝑄
𝑘)

𝑊𝑄
𝑘+1 = argmin

𝑊𝑄∈ℝ𝑛

1

2
‖𝑊𝑄 −𝑊𝑘+1‖

2

+
𝜆

2
dist(𝑊𝑄, 𝑄)

2
 

(4.8) 
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The algorithm constructs two sequences: an auxiliary sequence of float weights 𝑊𝑘 and a 

sequence of nearly quantized weights 𝑊𝑄
𝑘. The mismatch of non-continuous projection and 

continuous gradient descent is resolved by the relaxed quantization step in (4.8), which calls for 

computing the proximal mapping of the function 𝜆/2 ∙ dist(𝑊𝑄 , 𝑄)
2
.  

Let the following expression be the quantization of 𝑊𝑘+1,  

proj𝑄(𝑊
𝑘+1) = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑊𝑄∈𝑄

1

2
‖𝑊𝑄 −𝑊𝑘+1‖

2

 

(4.9) 

then the solution to relaxed quantization sub-problem in (4.8) is given by  

𝑊𝑄
𝑘+1 =

𝜆proj𝑄(𝑊
𝑘+1) +𝑊𝑘+1

𝜆 + 1
 

(4.10) 

Note that the exact quantization is still needed to perform relaxed quantization. The update 

𝑊𝑄
𝑘+1 is essentially a linear interpolation of 𝑊𝑘+1 and its quantization proj𝑄(𝑊

𝑘+1), and 𝜆 

controls the weighted average. 𝑊𝑄
𝑘+1 is thus not quantized because 𝑊𝑄

𝑘+1 ∉ 𝑄, but 𝑊𝑄
𝑘+1 

approaches Q as 𝜆 increases. Hereby a continuation strategy is adopted and let 𝜆 grow slowly. 

Specifically, the 𝜆 is increased after a certain number of epochs by a factor 𝜌 > 1. Intuitively, 

the relaxation with continuation will help skip over some bad local minima located in 𝑄 , 

because they are not local minima of the relaxed formulation in general.  
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The BinaryRelax algorithm is summarized in Alg. 4.1.  

In order to obtain quantized weights in the end, the relaxation mode was turned off in the 

Phase II and enforce quantization.  

Input: input batch; number of epochs, batches; schedule of learning rate 𝛾𝑘; growth 

factor 𝜌 > 1 

for 𝑖 ← 1 to nb-epoch do 

  for 𝑗 ← 1 to nb-batch do 

    𝑖𝑛𝑝𝑢𝑡𝑄 ← proj𝑄(𝑖𝑛𝑝𝑢𝑡) 

    loss←forward(𝑊𝑄
𝑘 , 𝑖𝑛𝑝𝑢𝑡𝑄)) 

    ∇𝑓𝑘(𝑊𝑄
𝑘) ← 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑙𝑜𝑠𝑠,𝑊𝑄

𝑘) 

    𝑊𝑘+1 ← 𝑊𝑘 − 𝛾𝑘∇𝑓𝑘(𝑥
𝑘) 

    if 𝑖 ≤ 𝑇 then 

      𝑊𝑄
𝑘+1 ← (𝜆𝑘proj𝑄(𝑊

𝑘+1) +𝑊𝑘+1)/(𝜆𝑘 + 1) // Phase I 

      if increase 𝜆 then 

        𝜆𝑘+1 ← 𝜌𝜆𝑘 

      end if 

    else 

      𝑊𝑄
𝑘+1 ← proj𝑄(𝑊

𝑘+1) // Phase II 

    end if 

    k← 𝑘 + 1 

  end for 

end for 

 
Alg. 4.1 The pseudocode for BinaryRelax 
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4.3 BNN training with relaxation in both activations and weights 

The BinaryRelax (weight relaxation) alleviated the variance of the weights during the training 

process. However, for the conventional BNN training process also quantizes the activation, the 

variance from the quantization of the activation harms the stability of the training and becomes 

a new problem which has to be solved. Therefore, to solve such issue, we propose new training 

procedures for BNN to employ relaxation to the activations (activation relaxation) and both 

activation and weight (activation & weight relaxation). 

The Algorithm above shows the details of proposed new training procedures with relaxation 

for the BNN. 𝑖𝑛𝑝𝑢𝑡 denotes the input batch or activations from previous layer. nb-epoch and 

nb-batch stand for the number of epochs and batches, respectively. 𝑇𝑎 and 𝑇𝑤 are the number 

of epochs to split the Phase I or II of the relaxed quantization for the activations and weights, 

respectively. Here, we set separate 𝑇𝑎  and 𝑇𝑤  parameters to achieve the controlling of 

Input: input batch; number of epochs, batches; schedule of learning rate 𝛾𝑘; growth 

factor 𝜌 > 1 

for 𝑖 ← 1 to nb-epoch do 

  for 𝑗 ← 1 to nb-batch do 

    if 𝑖 ≤ 𝑇𝑎 then 

      𝑖𝑛𝑝𝑢𝑡𝑄 ← (𝜆𝑘proj𝑄(𝑖𝑛𝑝𝑢𝑡) + 𝑖𝑛𝑝𝑢𝑡)/(𝜆𝑘 + 1) // Phase I 

    else 

      𝑖𝑛𝑝𝑢𝑡𝑄 ← proj𝑄(𝑖𝑛𝑝𝑢𝑡) // Phase II 

    loss←forward(𝑊𝑄
𝑘 , 𝑖𝑛𝑝𝑢𝑡𝑄)) 

    ∇𝑓𝑘(𝑊𝑄
𝑘) ← 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑙𝑜𝑠𝑠,𝑊𝑄

𝑘) 

    𝑊𝑘+1 ← 𝑊𝑘 − 𝛾𝑘∇𝑓𝑘(𝑊𝑄
𝑘) 

    if 𝑖 ≤ 𝑇𝑤 then 

      𝑊𝑄
𝑘+1 ← (𝜆𝑘proj𝑄(𝑊

𝑘+1) +𝑊𝑘+1)/(𝜆𝑘 + 1) // Phase II 

      if increase 𝜆 then 

        𝜆𝑘+1 ← 𝜌𝜆𝑘 

      end if 

    else 

      𝑊𝑄
𝑘+1 ← proj𝑄(𝑊

𝑘+1) // Phase II 

    end if 

    k← 𝑘 + 1 

  end for 

end for 

 

 Alg. 4.2 The pseudocode for proposed Activation &Weight Relaxation 
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different mode of the training. 

4.4 Experiments and results 

We conducted several image classification experiments mainly based on the CIFAR-10 

dataset, which is a common benchmark dataset used for the image classification task. The 

dataset consists of 60k (train/test: 50k/10k) 32 by 32 color images in 10 classes with 6000 

images in each class. The program for the experiments is implemented in PyTorch and the 

program is executed on Ubuntu 16.04 with the NVidia GeForce GTX 1080 Ti graphic card.  

To make a fair comparison, the similar setups and model architecture compared to the original 

BNN paper are used in this experiment as much as possible. 

4.4.1 Experiment settings 

The preprocessing part of the experiment simply used random crop, random horizontal flip, 

and normalizing with image net statistics. The basic binary ResNet-20 CNN model architecture 

used in this work is shown in following Fig. 4.1. 

In Fig. 4.1, "3×3 conv 80" represents a 3 by 3 convolution layer with 80 channels followed 

by the batch normalization layer and ReLU activation layer. 

The ResNet-20 CNN model architecture is mainly composed of three convolution layer 

blocks (each block consists of four layers and two residual paths) followed by three fully-

connected layers with the output feature numbers of 320 before the final 'Softmax' layer which 

outputs the classification predictions.  

In order to discuss the dependencies on some conditions, we conducted the experiments while 

changing the conditions as shown in Table 10. The conditions can be varied by changing the 

combination of 1) weight relaxation only, activation relaxation only and activation & weight 

both relaxation, 2) using various different lambdas of {0.125, 0.25, 0.5, 1, 2, 4, 8, 16} which 

Fig. 4.1 The ResNet-20 CNN model architecture used in this work  
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control the strength of the relaxation and take the best result point, 3) using Adam or SGD 

optimizer during training and 4) whether using trained or fixed batch normalization ('fixed BN' 

means that the parameters of the BN layer are fixed to the initial values). 

Table 10 The variations of the experiments in different cases 

Methods # of lambda If use Adam or SGD 

optimizer 

If use trained or 

fixed BN 

Weight Relaxation 8 values True/False True/False 

Activation 

Relaxation 

8 values True/False True/False 

Activation & Weight 

Relaxation 

8 values True/False True/False 

4.4.2 Overall results 

The Fig. 4.2 shows the comparison of error rate (%) curve of 4 methods including BNN, 

weight relaxation (abbreviated as 'WeightRlx' in the figure), activation relaxation (abbreviated 

as 'ActRlx' in the figure), and activation and weight relaxation (abbreviated as 'ActWeightRlx' 

in the figure). 

It is shown that the proposed relaxed training methods ('WeightRlx', 'ActRlx', and 

'ActWeightRlx') are almost always under the curve of BNN. It is shown that the proposed 

methods can achieve lower error rates within fewer training epochs which can improve the 

efficiency in the training time. 

The Fig. 4.3 shows the comparison of 'current/final' of absolute mean of weight (full 

precision) by epoch among the 4 methods. The x-axis is the epoch of training. The y-axis is the 

ratio of current and final value of absolute mean of weight (full precision). This simply measures 

Fig. 4.2 The comparison of error curve error rate (%) among the 4 methods 
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how the current weight is converging to the final weight by epoch. We take absolute mean of 

full-precision weight to see the average of the absolute value of the weight. We take the 

'current/final' ratio to see the progress of the training.  

It is shown that in epoch 60~160 the ratios of proposed methods are increasing much quicker 

than the ratio of BNN. Therefore, with the proposed methods, the training process is quicker 

compared to the conventional BNN training method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Comparison of 'current/final' of absolute mean of weight (full precision) 

by epoch among the 4 methods 
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4.4.3 Result of error rate improvement 

The following Fig. 4.4 shows the comparisons of error rate improvement (%) in different 

cases among the BNN and the proposed methods ('WeightRlx', 'ActRlx', and 'ActWeightRlx').  

The error rate improvement (%) is calculated by 100% × (𝑒𝑟𝑟𝑜𝑟𝐵𝑁𝑁 − 𝑒𝑟𝑟𝑜𝑟)/𝑒𝑟𝑟𝑜𝑟𝐵𝑁𝑁. 

The row of the sub-figures means the case of using the Adam or SGD optimizer. The column 

of the sub-figures means the case of using the trained batch normalization or fixed batch 

normalization.  

It is shown that all the results of using proposed methods have improvements compared to 

the traditional BNN training method. In the case of 'optimizer=adam & normalize=trained BN', 

which is the most common case for the model training, the proposed activation relaxation can 

achieve an improvement by 1.71% compared to BNN baseline. In the case of 'optimizer=adam 

& normalize=fixed BN', the proposed activation & weight relaxation can achieve an 

improvement by 8.60% compared to BNN baseline. In the case of 'optimizer=sgd', the proposed 

training with relaxation methods also can achieve improvements by 1.25%~6.65% compared 

to BNN baseline. 

Fig. 4.4 Comparison of error rate improvement (%) in different cases among the 4 methods 
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4.4.4 Result of error rate standard deviation improvement 

The following Fig. 4.5 shows the comparisons of error rate standard deviation improvement 

(%) in different cases among the BNN and the proposed methods ('WeightRlx', 'ActRlx', and 

'ActWeightRlx').  

The error rate standard deviation improvement (%) is calculated by 100% ×

(𝜎(𝑒𝑟𝑟𝑜𝑟𝐵𝑁𝑁) − 𝜎(𝑒𝑟𝑟𝑜𝑟))/𝜎(𝑒𝑟𝑟𝑜𝑟𝐵𝑁𝑁). The row of the sub-figures means the case of using 

the Adam or SGD optimizer. The column of the sub-figures means the case of using the trained 

batch normalization or fixed batch normalization.  

It is shown that almost all the results of using proposed methods have improvements 

compared to the traditional BNN training method. In the case of 'optimizer=adam & 

normalize=trained BN', which is the most common case for the model training, the proposed 

activation relaxation can achieve an improvement by 13.08% compared to BNN baseline. In 

the case of 'optimizer=adam & normalize=fixed BN', the proposed activation relaxation and 

activation & weight relaxation can achieve an improvement by 2.75% compared to BNN 

baseline. In the case of 'optimizer=sgd & normalize=trained BN ', the proposed training with 

Fig. 4.5 Comparison of error rate standard deviation improvement (%) in different cases 

among the 4 methods 
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relaxation methods also can achieve improvements by 6.01%~17.24% compared to BNN 

baseline. In the case of 'optimizer=sgd & normalize=fixed BN ', the most difficult case for 

training, the proposed training with relaxation methods can achieve improvements by 

35%~47% compared to BNN baseline, showing that the proposed training with relaxation 

methods works even better during some conditions which are hard for training. 

4.5 Conclusion 

This chapter mainly discussed the relaxation techniques in the BNN training process. The 

conventional relaxed training method was introduced firstly, which only employed the relaxed 

quantization to the weights. To adapt the conventional method to the BNN and further improve 

the stability of the BNN models in the training process, we proposed the weight relaxation, 

activation relaxation, and activation & weight relaxation to employ the relaxed quantization to 

the activations or both the activations and the weights. 

To compare the proposed methods and the conventional method in detail and fairly, we 

conducted a number of experiments in various cases including changing optimizers, using 

trained or fixed batch normalization, and with different strengths of the relaxation. Through the 

experiments on the CIFAR-10 dataset, we confirmed that the proposed activation & weight 

relaxation method can improve the error rate by over 1.71% and improve the standard deviation 

of the error rates by over 13.08%, compared to the conventional BNN method. 
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Chapter 5 Conclusion 

This work mainly researched the techniques to improve the bit energy efficiency of the 

machine learning systems. With the conventional implementation of in-memory classifier 

reaching great energy saving and available accuracy, hardware errors and nonlinear noises 

existed in the bit cells as well as the time-dependent variability makes the model need more 

memory arrays to achieve available performance, which calls the demand on the methods to 

reduce the impact of variability as well as the number of memory column arrays. The 

conventional network quantization and training techniques also need breakthroughs to achieve 

higher accuracy and more stable training process. 

Based on the conventional implementation for in-memory machine learning classifier 

employing 1-Bit Constraint-resolution-regression-based error adaptive classifier boosting 

algorithm, in order to achieve a further level of the energy saving, a two-step processing method 

was proposed. First, an adaptive pruning process was proposed based on the different difficulty 

between the classification tasks. Then, from the view of heuristic search, maximal accuracy 

gains first criterion based greedy search and its fast version were proposed. Based on weakest 

boosted classifier first criterion, the worst-care selecting algorithm was proposed. With 

comparison of the accuracy by proposed processing, some typical results of experiment verified 

the effect of column reduction by proposed algorithms. 

The stability and accuracy loss issue of conventional binary neural networks was revealed. 

To improve the stability and accuracy of low precision networks, a layer-wise ensemble 

technique for BNN was proposed in this work. Through the experiments on the CIFAR-10 

dataset, it is shown that the proposed technique can reduce the error and its standard deviation 

by 15% and 54%, respectively, compared to the BNN serving as a baseline.  

To further improve the BNN training with relaxed quantization, we propose new training 

procedures with relaxation of both weights and activations for BNN. It is proved to be able to 

alleviate the variance by the conventional BNN training process (>2%) with the experiments of 

various cases including different optimizers and with or without batch normalization.  
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