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Rooted Tree Sequence Problems

Masaya TAKAHASHI (Department of Electronics and Information Science, Fukuoka J. College of Technology)

SUMMARY

Let D be a directed tree. If deg (»)=0 for some vertex » € D, and deg~(v)=1 for any
vertex v € D with v=7, then » is called a o0t and D is called a rooted tree. A sequence of

nonnegative integers S=/(s), s, -, S») is & rooted tree sequence if there is a rooted tree with

vertices v, vg, ***, Un such that deg*(v;)=s, for each ;=1,2, -, n. The rooted tree sequence

problem is: Given a sequence of nonnegative integers, determine whether it is a rooted tree

sequence or not. In this paper, I consider several variations of the rooted tree sequence problem

and give linear time algorithms.

Key words: minium depth, leveled rooted tree, tournament tree, scorve sequence, optimal and

optimum condition

1. Introduction

Let D be a directed tree. If deg=(#)=0 for
some vertex » € D, and deg™(v)=1 for any vertex
v € D with v+, then » is called a »o0f and D is
called a rooted tree (deg™(v) is the indegree of v).
A sequence of nonnegative integers S={(s1, s3, ",
sa) is a rooted tree sequence if there is a rooted tree
with vertices 1, vz, -+, v, such that deg*(v;)=s; for
each j=1,2,--, n(deg*(v;) is the outdegree of v;).
The rooted tree sequence problem is: Given a
sequence of nonnegative integers, determine
whether it is a rooted tree sequence or not. The
rooted tree sequence problem was considered as
the special case of graphical degree sequence
problems by Menon?. The graphical degree
sequence problems and the variations of them
have been considered by Havel ®, Erdos and Gal-
lai ”, Takahashi, Imai and Asano®*'®, Landau'?
and others **%).

In this paper, I consider several variations of
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the rooted tree sequence problem and give linear
time algorithms. Furthermore, I consider the
score sequence problem of a tournament tree and
give linear time algorithms.

2. Rooted Tree Sequence Problem

In this section, I consider the rooted tree
sequence problem. I first recall the previous
results. Menon ? gave Proposition 2. 1 in the fol-
lowing. (The proposition is introduced in a stan-
dard book of graph theory ¥.)

Proposition 2. 1: Let S=(s;, sz, '+, $n) be a
sequence of nonnegative integers. Then S is a
directed tree sequence if and only if 2% 15;,=xn—1.

Based on Proposition 2. 1, I can determine
whether S is a rooted tree sequence or not in O(#x)
time.

I can assume without loss of generality that
Sp) 2 Sp) = Z Spem (pis a pernutation on {1, 2, -+,
n}). Then sp1y =21 and Spmy 20 hold. By the follow-
ing algorithm, it is clear that a rooted tree D with
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S as a rooted tree sequence can be obtained.

Algorithm CRT:
Step 1. wi:=0 and ¢g:=1.
Step 2: For j:=2 to n do the following.
(@) u;=0, uqg=1uq,+1 and add edge (voa), Vi) -
) If uq=sq then g:=q+1 and uq.:=0.

Since the sorting of S to satisfy Spa) = Spoy =+
=550 requires only O(n) time Y, if S is a rooted
tree sequence then a rooted tree D with S can be
constructed in O(#») time.

In the following, I consider variations of the
rooted tree sequence problem and present linear
time algorithms.

2.1 Minimum Depth Problem

Let D be a rooted tree with root . For any
path P=(uvs, v1), (v1, v2), -, (Ve1, 08) of D,k is
called a distance and denoted by d(v,, vs). I define
that d(vo, v0)=0. For each vertex v € D, max {d(r,
v)} is also called a depth of D. Then I consider the
minimum depth problem: Given a rooted tree
sequence S={(s), s, ", $»), construct a rooted tree
D with S as a rooted tree sequence such that a
depth of D is minimum.

Let x be the lower bound of D with S as a
rooted tree sequence. If S has a special from, I
present the lower bound as follows.

Proposition 2. 2: Let S=(si, s, ", 5») be a
rooted tree sequence with si=s, =---2s,. Thenthe
following (1) and (2) hold:

1) I siz(n—1)/2then x=[ (n—1)/s1] ,

@) If si=sp=r=5,21, spp1=r=5=0(1=r=
n—1) and DI {n—1/rP+1Lu= Dk {n—1)/
7} hold for some integer ¢, then x=¢. Especially,
if s,=2 then x=1 logsr] +1. []

1t is easy to prove Proposition 2. 2, and I will
omit the proof here. In general case, I can obtain
the following proposition.
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Proposition 2. 3: Let S=(si, 52, -, $2) be a
rooted tree sequence with s 2 s;=2+-- Zs». Thenthe
lower bound x can be found and a rooted tree D
with S such that a depth of D is x can be construct-
ed, by the following algorithm.

Algorithm CRT-1:
Step 11 =0, level (v1):=0 and ¢:=1.
Step 2: For j:=2 to n do the following.
(@) wu;=0, level (v;):=level (vq)+1 and uqg:=

uq+1.
(b) add edge (vq, v;) and if wuq=S$q then ¢:=q
+1 and #4:=0.

Step 3: x:i=lebel (vn).

Proof: Let D be a rooted tree with .S such that
a depth of D is x”, and let D1 be a rooted tree
obtaibed by Algorithm CRT-1.

Suppose that D has a vertex v, satisfying d(7,
v;) >level (v;) for some 1=j<g=xn. Then D has a
vertex v, satisfying d (r,ve) <level(vg) for some
1=j<g<n. Since j<gq, s;=sq hold.

Assume s;=sq. I construct a directed tree D’
obtained by swapping v; and ve. Let x” be a deaph
of I’. Then x'=x" holds.

Assume s;>5sq. For each 1=1,2,--,s;, let w:
be a vertex such that D has an edge (v;, we), sD(w:)
be a rooted subtree with root w., and sdp (w:) be a
depth of sD{w:). Then I can assume sdp (wxa) 2
sdp (wae) == sdp (wusy) (k is a permutation
on {1,2,-, s;1).
obtained by swapping v; U{(v;, wan)| £=1,2,-, s;
— st U{sD(wr) | t=1,2,++, s;—54} and ve. Let &’
be a depth of D". Then x'<x" holds.

Suppose that v; € D satisfies d(r, v;)=1level (
v;) for each j=1,2, -+, n. Assume that D does not

I construct a rooted tree D'

have an edge (v;, ve) such that (v;, ve) in Dy for
some 1= /< a=#n. Then D has an edge (v;, vs) such
that (v;, vs) not in Dy for some 1= ;< b=#, and has
an edge (vq, va) such that (v, va) not in D: for some
1= g¢<a=n. (Itisclear thatlevel (v;)=level (v4).)
1 construct a rooted tree D'=D U {(v;, va), (va, vs)}
—{(u;, v»), (vq, va)}. Let x" be a depth of D". Then
x'=x" holds.
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For the argument above, see Example 2. 1. By
setting D:=D',x":=x, and repeating the argu-
ment above, I can finally obtain D=2D; with S as
a rooted tree sequence such that a depth x of D is
minimum. [ ]

Example 2. 1: Let $=(4,3,2,1,0,0,0,0,0,0,
0), D be any rooted tree with S (see Fig. 2. 1), and
D be a rooted tree obtained by Algorithm CRT-1
with S (see Fig. 2. 2).Then depth of D is 3 and
depth of D, is 2.

Fig. 2. 2.

(1) d(»,v)=1>level(v;)=0 holds in D.
Then d{(r, va)=0<level (vs)=1, d(r, v)=1>d(r,
v3)=0 and 1< 3 hold for vsin D. By swapping {v1}
U{(v1, v2), (01, 00} U{sD(v2), sD(vs)} and ws, I can
obtain a rooted tree D’ such that a depth of D" is 2
(see Fig. 2. 3). Set D:=D'.
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(2) T construct a rooted tree D'=DU{ (v, vs),
(vs, va)} —{ (w2, vs), (vs, vs)} (see Fig. 2. 4). Thena
depth of D" is 2. Set D:=D’". By repeating same
operations, I can finally obtain D=D; with S such
that a depth of D1 is 2. [ ]

It is easy to see that Algorithm CRT-1
requires only O(#) time. Thus, based on Proposi-
tion 2. 3, I have the following theorem.

Theorem 2. 1: For a rooted tree sequence S=
(81, S2, ", Sn) With s1= 522+ 2 55, @ rooted tree with
minimum depth and S, can be constructed in O(#n)
time.

2.2 Leveled Rooted Tree Ssequence Problem

Let S=(si, sz, ", s») be a rooted tree sequence,
and D be a rooted tree with S. Then D is called a
leveled rooted tree if and only if v is a root of D
and d(v, v;) £d{v, vq) for each 12 <g< n.

Example 2. 2: Let $=(2,3,1,0,0,0,2,1,0,0),
D (see Fig. 2. 5) and D (see Fig.2. 6) be rooted
trees. D is a leveled rooted tree since v; is a root
of Dy and d{v1, v;)Sd(w, vq) foreach 1=/ <g=n.
However D, is not so since d{w, v3)=2>d (v,

D4):1-D

Then I consider the leveled rooted tree
sequence problem: Given a rooted tree sequence S
=(gy, S, **, Sn), determine whether S is a leveled
rooted tree sequence (i. e, there is a leveled rooted
tree with vertex set V={v, v, -, v»} such that
deg*(v;) =s; for each j=1,2,---,»). Then the
following proposition holds.

Proposition 2. 4: Let S‘:(s;, Sz, 7+, S») be a
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Fig. 2. 5. Fig. 2. 6.

rooted tree sequence (which is a randum non-
negative integer sequence). Then S is a leveled
rooted tree sequence if and only if 2%k.s;2 4 for
each k=1, 2, -, n—1, with equality holding for k=
n—1.

Proof: Necessity can be obtained as follows.
Let S=(s1, 55, ", 5.) be a leveled rooted tree
sequence and D be a leveled rooted tree with S. 1
use an induction on the distance. For v1, d{v1, v1)=
0 and s121 since v is a root of D. Thus 2ius;=
1 holds. Let x be the depth of D and » be any
nonnegative integer with »<x. Let z=max {j |
d(vy, v;)=r—1} and ¢=max{;j|d(v, v;)=7r}.
Then t<# and 28,2 ¢ —1. Assume that 2 %5,
=k for each k=1, 2,---, t, as the hypothesis of the
induction. Let ¢=23-zns,. Then 2is;=t+g¢q
—1,and max {7 | d(v, v;)=r+1}=t+¢. Suppose
that »+1<x. Then t+¢<» and 2ifas,=1.
Thus Xi2fs;=2¢+¢—1 for each 6=1,2,---,¢~1,
and 23i3fs;=t+¢ hold. Suppose that »+1=x.
Then t+g=n and 2}8;=0. Thus Xifs,=t
+g—1=n—1 holds for each b=1,2,--, n—¢—1.
This completes the proof of necessity.

Sufficiency can be obtained as follows. I use
an induction on k. Assume k=1. Let D, be a
rooted tree with vertex »;. Then D; has no edge
and is a leveled rooted tree. Assume k= ¢ for some
integer 1= g¢<n—1. Suppose that D, be a leveled
rooted tree with vertices w, 0o, ¢, vy, as the
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hypothesis of the induction. Then Dq has only ¢
—1 edges. However, 2§-15;2¢ (if ¢g=n—1 then
X ils;=n—1). Thus D, has a vertex v, satisfying
deg™(v*)<s, for some 1<h<gqg. Let t=d(vi, vq)
and »=min{/|deg*(v;)<s,}. Then d(uv, vr)=t
—1 or d(w, v-)="t since Dy is a leveled rooted
tree. Furthermore, if d(v1, v-)=1¢ then deg*(v,)=
0. Thus I can construct a rooted tree Dgs1=Dyq
+(vr, vgs1) With vertices vy, vs, -+, vg41. Then, if
d(vi, v:)=t—1 then d{v, ver1)=t else d(v, vgs1)
=t+1. Hence d(w, v;)<d{(v, vs) holds for each 1
=j<b=g-+1 and Dy is a leveled rooted tree.
This completes the proof of sufficiency. [ ]

Based on proposition 2. 4, the following theo-
rem can be obtained easily.

Theorom 2. 2: For a rooted tree sequence S=/{(s,
Sz, ", S») which is a randum nonnegative integer
sequencce, it can be determined in O(x) time
whether S is a leveled rooted tree sequence or not.

Next I present an algorrithm for actually
constructing a leveled rooted tree for a given
leveled rooted tree sequence based on the follow-
ing proposition.

Proposition 2. 5: Let S=(s), s3>+, Sx) be a
rooted tree sequence. Let T=(#, t;, -, t-1) be
defined by using ¢g=max {/|s;=1} as follows.

- {Sj“l if /=g,
S otherwise.
Then S is a leveled rooted tree sequence if and
only if T is a leveled rooted tree sequence and s»

=0.

Proof: Sufficiency can be obtained as follows.
Let T be a leveled rooted tree sequence and s,={.
Then 2/=1,=n—2 and 2f-1,2 & for each j=1, 2,
v, n—2 (if k=n—2 then 2)}cft;=n~2), by Propo-
sition 2.4, Thus 2 %1s;=2 % 1t;2 k for each j=1,
2,...¢g—1, and 2is,=2%0+1=k+1 for each j
=gq,q+1, -, n—2. Furthermore, 27ls;=2/=1t
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+1=(n—2)+1=n—1 and 21%is;=xn—1 since s,
=(. Hence 2}}1s,=n—1 and X %1s;= k for each j
=1,2,--,n—1 (f k=n—1 then X%is,=n—1),
and therefore, S is a leveled rooted tree sequence.

Necessity can be obtained as follows. Let S be
a leveled rooted tree sequence and D be a leveled
rooted tree with S. Since 2)4is;,=n—1 and 21751's;
=yx—1 by Proposition 2. 4, s,=0 holds. Let d(u,
va)=7v in D. Suppose that (vq, v2) € D. Then d(v:,
vg)=+»—11in D and D'=D—uv, is also a leveled
rooted tree with 7. Suppose that (vq, va) ¢ D.
Then D has a vertex v, such that s, =1, d{v1, vs)=
r—1 and (vz, vs) in D. Since D is a leveled rooted
tree, d(vi, vq)=+—1 and z<gq. Furthermore, D
has a vertex w such that deg™(w)=0, d(v;, w)=r
and (ve, w) in D. Thus D'=DU{(vq, vx), (v, w)}
—{(ve,w), (vz, v2)} is also a leveled rooted tree
with S. By setting D:=D, D'=D—v, is also a
leveled rooted tree with 7. []

Based on Proposition 2. 5, I can obtain the
following algorithm CLRT for constructing a
leveled rooted tree D having S as a leveled rooted

tree sequence.

Algorithm CLRT.
Step 1: w1=0, level (v1):=0 and ¢:=1.
Step 2: For j:=2 to n do the following.
(@) u;:=0, level (v,):=level (vg)+1 and ug: =14
+1.
(b) add edge (vq v;).
(c) while ug=sq do g:=q+1 and uq:=0.

It is easy to that Algorithm CLRT correctly
constructs a leveled rooted tree D with S as a
leveled rooted tree sequence and that it takes O(#)
time. Thus the following theorem can be obtained.

Theorem 2. 3: For a leveled rooted tree
sequence S=(s;, sz, ", s»), a leveled rooted tree
with S can be obtained in O(#) time.
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3. Score Sequence Problem of a Tournament Tree

Let T be a rooted tree with n leaves. (Note
that any vertex v € T is called a leaf if and only if
deg™(v)=0 and deg(v)=1.) Then T is called a
tournament tree if and only if the following (1)
through (3) are satisfied:

(1} Forarootre T,deg(»)=2and deg ()=
0, .

(2) For any vertex v € T whichisnotaroot and
is not a leaf, deg™(v)=2 and deg~(v)=1,

(3) T has 2n—1 vertices and 2n—2 edges.

Let T be a tournament tree with » leaves and
W ={wx, ws, -, wn) be a set of #n elements. Then a
champion of W is selected by using the following
method:

(1) Each element wi{1=;=n) of Wissettoa
leaf of 7. There is an one-to-one corre-
spondence between W and leaves of T,

(2) For a vertex ve€ T whichisnot a leaf, and
two edges (v, u1), (v, uz), assume 2= w; and
w=w,GFq, 1=;5n,1=5g<n). Then w;is
a winner then set v:=wj; else vi=ws.

It is clear that a root of 7" is champion of W.

Example 3. 1: Let W={(uw1, ws, -, wr) be a set
of seven elements and 7 be a tournament tree with
seven leaves (see Fig. 3. 1). Assume that each
element of W is assigned to leaves of T (see Fig.
3.1). Suppose that (w;, we) means “w; win to w,.”
If (s, we), Cor, wa), (e, wr), (wn, ws), (ws, ws), and
(wy, ws) then I can obtain a result as shown in Fig.

3.2. ]

Let win (w;,) be a number of win of w; and lose (
w;) be a number of lose of w; for each j=1,2, -+, n.
Then 2%, win (w;)=#n—1, lose (wq)=0 for some
¢, 1=g<wn, and lose (w;)=1 for each 7, 1<;<n,;
#g¢. Thus (win (wy), win (ws), -, win (w.)) is a

rooted tree sequence and 7T has 2n—2=2(
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W, Ws

Fig. 3. L.

We We Wi Wi

Fig. 3. 2.

7., win (w;)) edges.

Let S=(s1, s, '+, S») be a rooted tree sequence
and let s;=win (w;) for each j=1,2, -+, n. Thenit
is clear that there is a tournament tree 7" with S.
Let » be a root of T, and let level (w;)=min{d(7,
w;)} and index (w;)=7 for each j=1,2,---, n. Fora
vertex v € T with v=» and an edge (u,v), u is
called a parent and denoted prt(v). Then T is
called a leveled tournament tree if and only if the
following conditions (C1) and (C2) are satisfied:

(C1) wnisarootof T (i.e., wiisachampion
of W),

(C2) (lebel (w;)<lebel (wq)) or (lebel (w;)=
lebel (w,) and index (prt (w;)) <index (prt (w,)))
foreach1sj<g=n.
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Example 3. 2: Let 5;=(1,2,2,1,0,0,0) and S,
=(3,3,0,0,0,0,0). Let D; (see Fig 3. 3) be tourna-
ment tree with S: as a rooted tree sequence and D,
(see Fig. 3. 4) be tournament tree with S: as a
rooted tree sepuence. D is a leveled tournament
tree since conditions (C1) and (C2) described
above are satisfied. However D, is not so since
level (204)=3> level (ws)=2 and index (prt (ws))
=index (u,)=2>index (prt (ws)) =index (wy)=1.

]

W, W

Fig. 3. 4.

In this section, I consider the score sequence
problem of a leved tournament tree: Given a
rooted tree sepuence S=(si, s, ", Sn), determine
whether S is a score sequence of a leveled tourna-

ment tree (i. e, there is a set of # elements W=
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(w1, ta, -+, wn) such that win (w;)=s, for each j=
1,2,-+, n, and there is a leveled tournament tree
with # leaves). Furthermore, I consider variations
of the score sequence problem of a leveled touna-

ment tree and present efficient algorithms.

3.1 Characterization

I assume without loss of generality that n=2.
Let leaf (w;)=max {d(r, w;)} for each j=1,2,-,
n, where 7 is a root of a tournament tree 7. Then
s;=win (w;)=leaf (w;)—level (w;) holds for each 7
=1, 2, -+, n. Then the following proposition holds.

Proposition 3. 1: Let S=(s;, s2,***, s») be a
rooted tree sequence (which is a randum non-
negative integer sequence). Then S is a score
sequence of a leveled tournament tree if and only
if 23%.s;=2k for each £=1,2, -+, n—1, with equal-
ity holding for k=n—1.

Proof: Necessity can be obtained as follows.
Let S=(s, sz, 52) be a score sequence of a
leveled tournament tree ane 7 be a leveled tourna-
ment tree with S. Let g be any integer with 1<¢
<u—1, and T'=T—{(u, v)| u, v € {wes, - wnl}.
Then T has at least ¢+1 leaves and 2X%; win (
w;) edges. Thus 2 fwin (w;)=21{-15;2¢ holds.
Suppose that g=#—1. Since s, =0, 2Jis,=n—1
and X%ls;=zn—1 by the discussion discribed
above, I can obtain 2)/<is;=#—1. This completes
the proof of necessity.

Sufficiency can be obtained as follows. I use
an induction of k. Assume k=1. Let 71 be a
rooted tree with win(w:)+1=s+1 vertices, s
edges and only one leaf. However, 71 has s
vertices v with deg*(v)=1. Thus I can construct a
rooted tree To=Ti+{(n, 72)+ D2, where 71 is a root
of 71, D: is a rooted tree with s;-+1 vertices, s
edges and only one leaf, and »; is a root of D..
Then 7> sataisfies the leveled tournament tree

rule. Assume k=g¢q for some integer 1=¢=n—1.
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Suppose that 7 be a rooted tree with the leveled
tournament tree rule, 21%is;+¢ vertices, 21¢-1S;
+¢g+1 edges and ¢ leaves as the hypothesis of the
induction (see Example 3. 3). However, T, can
have 221%-1s; edges. Thus, since 2152 ¢ (if ¢=
n—1 then X}ls;=n—1), Ty has at least one
vertex v with deg*(v)=1. I can construct a rooted
tree Tyn= Te+(uq, #411)+ Dqs1, where uq is cho-
sen from a vertex set V'={v|deg™(v)=1 in Ty}
such that level (#,) and index («,) are minimum
respectively in V', Dg41 is a rooted tree with Sq+:1
+1 vertices, sq+1 edges and only one leaf, and 7g+1
is a root of Dgs1. Then Ty.i satisfies the leveled
tournament tree rule by the hypothesis of induc-

tion. This completes the proof of sufficiency. [ ]

Example 3. 3: Let S=(3,2,1,0,0,1,0,0) be a
rooted tree sequence and S'=(3,2,1) be a subse-
quence of S. Then T; (see Fig. 3.5) isarooted tree
with the leveled tournament tree rule, (3+2+1)+3
=9 vertices, 9—1=8 edges and three leaves. [ ]

Wi

Wi W, W

Fig. 3. 5.

Based on Proposition 3. 1, the following theo-

rem can be obtained easily.

Theorem 3. 1: For a rooted tree sequence S
=(s), S, ***, $») which is a randum nonnegative inte-
ger sequence, it can be determined in O{#) time
whether S is a score sequence of a leveled tourna-

ment tree or not.
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Next I present an algorithm for actually con-
structing a leveled tournament tree for a given
score sequence of a leveled tournament tree. In the
algorithm, L; is initialized empty and represented
by a doubly-linked list and pre,(v) and suc;(v)
denote the previous element and the next element
of ve L;for each j=0,1,2,--, n—1.

Algorithm CLTT.
Begin
1. q:=1,d:=0; ty=uwy
insert #, into L4 as the last element; g:=¢+1;
2.  For j:=2 to »n do begin
(a) If Lyis empty then d:=d+1;
v:=the first element of Lg;
delete v from Lg;
0 te=v;deg*(v):=deg*(v)—1;
if deg*(v)=1 then insert f; into La+
as index (pre 441(tq)) < index(t,) < index(
suc a+1(a));
(€ tori=w;
If ;=1 then insert f41 into Lay
as index (pre a+1{fq+1)) < index(£441) <
index (suc a1{fe+1));
(@ add two edges (v, t;) and (v, tq+1);
g:=q+2end
End.

It is easy see that Algorithm CLTT correctly
constructs a leveled tournament tree T with S as
a score sequence of a leveled tournament tree and
that it takes O(#) time. Thus the following theo-

rem can be obtained.

Theorem 3. 2: For a score sequence of a
leveled tournament tree S=(s1, sz, ***, $»), a leveled
tournament tree with S can be obtained in O(n)

time.

3.2 Optimal Condition and Optimum Condition

Let T be a leveled tournament tree with »
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leaves. For any leaf v of T, d(»,v)<{ log:n]
holds if and only if T is optimal, where v is a root
of T and{ log:#) is the least integer which is
equal or greater than logen. (If T is optimal then
T must have a leaf v with d(», v)={ logen] .)
Especially, for any leaf v of T, d(#, v)=={ logzn|
or d(r,v)={ logen] holds if and only if T is
optimum, where [ logzn| is the greatest integer
which is equal or less than logzn. Then I consider
the optimal (optimum, vespectively) condition:
Given a score sequence of a leveled tournament
tree S={s1, sz, """, sn), determine whether S is opti-
mal (optimum) (. e, there is a set of # elements
W =(w1, wy, -+, wa) such that win (w;)=s; for each
7=1,2,++, n, and there is an optimal (optimurm)
leveled tournament tree S and » leaves).

First I can obtain the following proopsition.

Proposition 3.2: Let S=(s1, s, -, 52) be a
score sequence of a leveled tournament tree.
Assume #=2" for some integer ». Then S is
optimal (optimum) if and only if s;=7 — [ logz 7]
holds for each j=1,2,, . [_]

It is easy to prove the proposition, and I will
omit a proof here.

Next I consider the 2" < n<2"*! case for some
integer ». Then I can obtain the following proposi-

tion.

Proposition 3. 3: Assume 2" <n<2"*' for
some integer ». Let S=(s, s, ", s») be a score
sequence of a leveled tournament tree. Then S is
optimum if and only if

_(7+1—[ log.j] or r—[ logz j} if 155227,

Sj_{o if 27 F1<j<m,
and s, — S (r—{[ logzj] )=n—2" holds,
where £=27.

Proof: Let y=27,let U(y)={, 12, -+, uy) be a
score sequence of a leveled tournament tree and let

X =(x1, x2, -, xy+1) be defined by using g=min{ |
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ssF+u;, 1=7< v} as follows,

u;+1 if j=qgand 1=/,

;79 U ifj#Fgand 175y,

0 if j=y+1.
Then it is clear that U(y) is optimum if and only if
X is optimum. Furthermore, by Proposition 3. 2,
U(y) is optimum if and only if w;=7»— [ logz7}
holds for each j=1,2,---, ». Thus X is optimum if

and only if
{r+1~[ logz ] or r—[ logz /) if 1Sj=y,
Xi= .
0 if j=y+1,

and i — 2517 — [ logzj] )=1 holds.

By setting y:=y+1 and U(y):=X, and re-
peating the argument above, I can finally obtain
that U(n)=X is optimum if and only if

_(rH+1={ loge ) or r~[ logej] if 15752,

”j_{o if 27 +1=j<n,
and 2w, —2%.(r— 1 logzj] )=n—2" holds,
where £=2". Then u,=s;holds for each j=1, 2, -+,

Furthermore I can obtain the following propo-

sition.

Proposition 3. 4: Assume 27<n<2"%' for
some integer ». Let S=(si, s, -, 5») be a score
sequence of a leveled tournament tree and let U=
(w1, 42, -, ur) be defined by the following algo-
rithm, where £=2"*"". Then S is optimal if and

only if U is optimum.

Algorithm DLOTT.
Begin
1. wuz=-1foreach ;=12 n q=1,
2. For j:=2 to »n do begin
(a) while u,# —1 do begin
for p:=wu, downto 1 do begin
b:=2"""P 4 up=r+1—( loge b} end:
g:=qg+1 end;
by W s;Zzr+1—1 logzq) then ug=s;
else do begin

ug=r+1—{ logz q} ;
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for b:=uq, downto 1 do begin
bi=2""""P 4 gy =r+1—1{ log: b)
end end:
() q:=q+1; If ¢>k then halt end
End.

Example 3. 4: Let S=(s1, 83, -, s2)=(2, 3,1, 2,
1,0,1,0,0,0,0) and S'=(s", s, s»)=(2,3,1,2,1,
0,0,1,0,0,0) be rooted tree sequences. Then k=
16, and U=(w1, us, -, ur)=(4,3,2,2,1,1,1,1,0,0,
0,0,0,0,0,0) and U'=(ulus.., ux)=(4,3,2,2,1,1,11,
0,1,0,0,0,0,0,0) are sequences defined from S and S’
respectively, by Algorithm DLOTT. w=81+2, 12
=82, Us=S3+ 1, Us=Ss, Us=S5, Ur=Ss+ 1, Us=357, U0
== Sg, Uiz=Se, U14= S10, U16= S11, and s, Us, U1, U3,
and w5 are new elements. Furthermore, u;=s:+1,
Up =53, us=Ss+1, us=su, us=ss, ur=se+ 1, ws= s
+1, wi0="5s, U12=Ss, U14=S10, and us, Us, U3y, 13, Uls
and w5 are new elements, however U’ does not
have an element corresponding to su. U is opti-
mum and U is not optimum. Hence S is optimal
and S’ isnot optimal. 7: (see Fig. 3. 6) is a leveled
tournament tree with S and 73 (see Fig. 3. 7) is
such a tree with U. ]

It is also easy to prove Proposition 3. 4, and [

W We W Wo We Wo Wy Wi
Fig. 3. 6.

will omit a proof here. Since 27 <#<27*,27"1<2n
holds. Thus Algorithm DLOTT requires O(#n)

time and it can be determined in O(x) time




—210—

\ i ! 1
1 ! '
\ [ ]

ShEBEEES

Wi Wo Ws W Ws Wi Wo Wis Ws Wie We W Wi Wi Wo Wae

-
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whether U is optimum or not.
Hence, based on Proposion 3, 2 through 3. 4,
the following theorem can be obtained easily.

Theorem 3.3: For a sequence of a leveled
tournament tree S=(sy, Sz, -+, S»), it can be deter-
mined in O(»n) time whether S is optimum or not,
and it can be determined in O(#) time whether S is

optimal or not.

Furthermore, it is easy to see that I can con-
struct an optimal (optimum) leveled tournament
tree with S in O(n) time by using Algorithm
CLTT, if S is optimal (optimum).

4. Concluding Reamarks

I have considered variations of the rooted tree
sequence problem and give linear time algorithms.
In this paper, I have treated a sequence of non-
negative integers.

In the following, assume that S=(s1, Sz,""", $u)
is a sequence of positive integers. Then I can
easily obtain a rooted tree with m-+1 vertices and
a leveled rooted tree with m+1 vertices from S
respectively, where m=2>}us;, and assume
deg*(v;,)=0 and deg (v;)=1 for each j=n+1,#n
+2,---,m+1. Such trees can be constructed in
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O(m) time. Furthermore I can easily obtain a
leveled tournament tree with m+1 leaves such
that win (w,)=s; for each j=1,2, -+, n, and win (
w;)=0 for each j=n+1, n+2,--,m+1. Such a
tree also can be constructed in O(s) time. For the
optimum condition, I can obtain the following

proposition.

Proposition 4, 1: Assume 2" '<m+1<2" for
some integer 7. Let S=(si, 55, ", 5») be a positive
integer sequence. Then S is optimum if and only
if s;=7r—1—1{ logz7] or s;=»—1{ log.j] for
eachj=1,2, -, n,and 215, — 2%a(r—1—[ logz j
1 )=m+1—2""hold. []

For the optimal condition, the result like
Proposition 3. 4 can be obtained.

I want to consider an efficient algorithm for
generating a leveled rooted tree sequence for fur-

ther investigation.
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