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Bipartite Digraphical Degree Sequence Problem

Masaya TAKABASHI (Department of Office Information Systems, Fukuoka Jr. College of Technology.)

SUMMARY

A sequence of nonnegative integers S=(s, s, - -
<+, vn such that deg(v;)=s; for each j=1,2, ----,n. The graphical degree

vertices vi, vz, * -

-+, 8n) is graphical if there is a graph with

sequence problem is: Given a sequence of nonnegative integers, determine whether it is
graphical or not. In this paper, we consider the k-partite multidigraphical degree sequence
problem and bipartite digraphical one, and give efficient algorithms for them.

Key words : k-partite dirvected wmultigraph, bipartite divected graph, nomnegative integers and

efficient algorithms

1. Introduction

A sequence of nonnegative integers S=(s;, sz,
<---,8n) is graphical if there is a graph with
vertices vi, vz, -+, va such that deg(v;)=s; for
each j=1,2, - -- -, n{deg(v;) is the degree of v;).
The graphical degree sequence problem is: Given
a sequence of nonnegative integers, determine
whether it is graphical or not. The graphical
degree sequence problem was first considered by
Havel” and then considered by Erdos and Gallai®
and Hakimi®. (These can be also found in stan-
dard books of graph theory" ©.)

Many variations can be considered. For
example, if we admit multigraphs, then the multi-
graphical version is obtained. We recently stud-
A set of
sequences of nonnegative integers {S;, Sz, - - -, S}
with S;=(sj, 32, - -, Sin) iS k-partite graphical
(k-partite multigraphical) if there is a k-partite
graph (k-partite multigraph) of k independent
coo, Vit with Vi={vy, vi,

ied variations described below® .

vertex sets {Vi, Vg, -

«+++ v} such that deg(viq)=s;q for each j=1, 2,
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<o, k,q=1,2, -+, n;. The k-partite graphical
(multigraphical) degree sequence problem is
defined as follows: Given a set of sequences of
nonnegative integers, determine whether it is k-
partite graphical (multigraphical) or not. Taka-
hashi, Imai and Asano considered the graphical,
multigraphical, bipartite graphiéal, bipartite
multigraphical and k - partite multigraphical
degree sequence problem and gave efficient algo-
rithms for them®.

The problems stated above are all about
undirected graphs. Directed versions can also be
obtained?. For example, a pair of nonnegative
integer sequences {S*¥,S™} is digraphical (multi-
digraphical) if there is a directed graph (directed
multigraph) with vertices vi, vs, * - - -, va such that
deg*(vi)=s; and deg (v;)=si for each j=1,2,
-+, n(deg*(v;) and deg~(v;) are the outdegree
and indegree of v; respectively), where S*=(sT,
s, --++,sf) and S"=(s1, 7, - -+, sn). The digra-
phical (multidigraphical) degree sequence prob-
lem is defined similarly: Given a pair of non-
negative integer sequences, determine whether it
is digraphical (multidigraphical) or not. We also
considered them and presented efficient algo-
rithms®.
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In this paper, we consider k-partite multidi-
graphical degree sequence problem and bipartite
digraphical one, and give efficient algorithms.

2. k-partite Multigraphical Degree
Sequence Problem

In this section, we consider the k-partite
multidigraphical (kpm-digraphical, for short)
degree sequence problem: Given a set of k pairs
of nonnegative integer sequences {(S}, Sr)|i=1,
2, -+ k} with Sf=(sf,, sk, - -, 5ia) and S; =(s5,
Sh, ** ", S for each j=1,2, -, k, determine
whether it is kpm-digraphical (that is, there is a
k-partite directed multigraph (kpm-digraph, for
short) of k independent vertex sets {Vy, Va, «---,
Vk} With Vj:{le, Viz, ="
deg*(vis)=s} and deg (viqy)=si for each j=1, 2,
-veo k,q=1,2,----,ny), where k=2 and n=m
+ngt .

-+, Vin,} such that

ny ny i
Let xf= Els?q and x;= EISj_q for each j=1, 2,
q= q=

sk xt=xf4xd 4o +xd and xT=x1+xe
+----+xi. Then we assume x"=x", because
otherwise {(Sf,Si)i=1,2, ---,k} is not kpm-
digraphical.

‘We first consider the k=2 case (i.e., bipartite
multidigraphical degree sequence problem). The
problem can be solved easily. (The problem can
be solved in a similar way as the bipartite multi-
graphical degree sequence problem®.)

Proposition 2.1. Let Sf==(s}, s, -+, sh)
and S;=(sf, SRk, ‘-, Sm) for each j=1,2, be a
pair of nonnegative integer sequences. Then {(Sf,
Sr), (8%, S7)} is bipartite multidigraphical if and
only if x{=x7 and xi=x3.

Based on Proposition 2.1, the following bipar-
tite directed multigraph construction algorithm is
immediately obtained: If {(Sf,S1), (54, S5)} is
bipartite multidigraphical, then

(1) add min(s#, szn) edges from vertex vu to
vertex vz and do recursively for {(Sf, S7), (SF,
S5}, where
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-+ stay) if shi>sa

{(SILl—SEl, sy, -
e

Sfz, * 7+, Sthy) otherwise

and
- {(sil—sﬁ, S "+, Sy if Sh<sm
* sz, -+, Szma) otherwise,

(2) add min(si, s#) edges from vertex va to
vertex vy and do recursively for {(S¥, St), (S77,
S7)}, where

. {(sﬁ—s'z*l,sfz, .
Sl = _ _

(SlZ, ttt Slm)

-« sim) if sn>sh
otherwise

and

+,__{(S'zﬁ—sﬁ, S3, - -+, sh,) if s<sh

P sk, o, st

Theorem 1. For a set of two pairs of non-

otherwise.

negative integer sequences {(S{,Sr), (84, S2)}
with St=(sf;, sk, - -, shy) and S7=(s71, 8, <" ",
Sm) for each j=1, 2, we can determine in O(n)
time whether {(St,S0),(54,S5)} is bipartite
multidigraphical and, if so, a bipartite directed
multigraph G with {(S, S1), (84, S3)} as a set of
degree sequences can be constructed in O(n) time
(n=n;+n,).

Next we consider the k=3 case. The kpm-
digraphical degree sequence problem can also be
solved easily. The following proposition can be
obtained in a similar way as the multigraphical
degree sequence problem?.

Proposition 2.2. Let {(Sf,S7)]i=1,2, -,
k} be a set of k pairs of nonnegative integer
sequences with Sf =(s;, s, - - -, shy) and Sy =(sf,
Sk, ***,Sm). Then {(Sf,S7)]i=1,2, ----,k} is
kpm-digraphical if and only if x{ +x7 = XH(=X").

Based on Proposition 2.2, we can determine
whether {(St,S7)1j=1,2, -, k} is kpm-digra-
phical or not in O(n) time, where n=n;+nz-+- -+ -
+ k.

To construct a kpm-digraph G with {(S}, Si)
| i=1,2, -
first construct a condensed directed multigraph H
-+, Wi which has X*=

(xf,x%,+ -+, xt) and X =(x1,x3, -

-+ k} as a set of degree sequences, we

with k vertices w1, Wy, **
-+ Xi) as a
pair of degree sequences. H can be obtained in
O(k) time based on the directed multigraph con-
struction algorithm®. Suppose that there are just
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hjq edges from w; to wq and hg; edge from wq to w;
in H. Restricting the vertex set of G to Vjand V,,
we construct a bipartite directed multigraph Giq
with hjq edges from V; to V4 and hq; edges from
Vq to V; based on the bipartite directed multi-
graph construction algorithm described above
and then modify the pairs of degree sequences of
(S7,Si) and (S4,S3). Repeating this procedure
iteratively, we can construct a kpm-digraph G in
O(n) time.

Theorem 2. For a set of k pairs of non-
negative integer sequences {(Sf,S7)|i=1,2, -+,
k} with S7=(sf, sk -+ -, sh) and S;y=(sj, sz,
-+, Siy), we can determine in O(n) time whether
{(5+,S7)15=1,2, -+ -, k} is kpm-digraphical (n=
m+n:+----+ng) and, if so, a kpm-digraph G
with {(§7,S7) |i=1,2, -+, k} as a set of degree
sequences can be constructed in O(n) time.

3. Bipartite Digraphical Degree Sequence
Problem

In this section, we consider the bipartite
digraphical degree sequence problem: Given a set
of two pairs of nonnegative integer sequences
{(St, S1), (84, S2)} with S =(sf, sk, '+ -+, St and
S;=(sji, 8%, ****,Sin) for each j=1,2, determine
whether it is bipartite digraphical (that is, there is
a bipartite directed graph of two independent
vertex sets {Vi, Vi} with V;={vy, viz, *** ", Vins}
such that deg*(vid)=si and deg (vi)=sp for
each j=1,2,q=1, 2, -+ -+, n;), where n=n;+n:.

ny nj
Let X?ZZIS}L and xjy= le,-‘q for each j=1, 2,
q= q=

x*=x{+x7 and x " =x7-+x7. Then we assume x*
=x", x{ +x; £x*(=x") for each j=1, 2, because

otherwise {(S7, St), (S7, S7)} is not bipartite digra-

phical.

This problem can be solved easily. (This
problem can be solved in a similar way as the
bipartite graphical degree sequence problem?®.)

We assume the following conditions (C1)
through (C3) without loss of generality:

(C1) mezshizsh=----2sh, and m=sHi=
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(C2) sh=nsforeachj=12 -, m, and sz
ny for each j=1,2, - -+ -, ny,
(C3)  Stmw=Sim@="‘"""=Shyny SNz, Stps) S
Sty =" SSm.mn=n; and for some permuta-
tionspron {1,2, -+, m} and pz on {1,2, -+, na}.

Then the following proposition can be
obtained in a similar way as the bipartite graphi-
cal degree sequence problem?®. ‘

Proposition 3.1. Let Sf=(s};, sk - -,sh)
and Sy=(sj,Sp "*"*,Sm) be a pair of non-
negative integer sequences for each j=1, 2, with
x{=x3, x{ =x3§ and satisfying the conditions (C1)
through (C3) described above. Then {(S{,S7),

(S#, S7)} is bipartite digraphical if and only if

i . a
281 =j(n2— @)+ Zszmw

for each j=1,2, ----, 1, q=1,2, -+ - -, nz, and
i . a
2si=ilm—a)+ Zsin

for each j=1,2, - -+, 3, q=1,2, - - - -, m.

Based on Proposition 3.1, we can determine
whether {(St, S1), (S#, S7)} is bipartite digraphical
or not in O(n) time (n=n;+nz) by a similar way as
the bipartite graphical degree sequence problem?.
Thus we have the following theorem.

Theorem 3. For a set of two pairs of non-
negative integer sequences {(Sf,Sr), (Sf,S5)}
with Sf=(sfi, sk, -+, sh) and S;=(sj, s%, - -,
Sin) for each j=1, 2, we can determine whether
{(St, S1), (S7, S2)} is bipartite digraphical or not
in O(n) time, where n=n; +n,.

Furthermore, we present an algorithm for
actually constructing a bipartite directed graph
for a given bipartite digraphical set of degree
sequences based on the following proposition,
which can be obtained easily in a similar way as
the bipartite graphical degree sequence problem®.

Proposition 3.2. Let S}=(sfi, sk, - -,sh)
and Sy=(sj, Sk, ~*-",Sm) be a pair of non-
negative integer sequences for each j=1, 2, with
x{=x7, X{ =x3,shiSsh=< - SsfnZny, shissh=
-+ Zsh,=n; and satisfying the conditions (C2)
and (C3) described above. Let Ti=(ty, tiz, -+ -,
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tin,) and T2=(tay, tz, - - - -, tzn,) be defined by using
217 S5a(nn), Z2=Sipatnn), I1=Min{j |81 =8{n,-z0r1}, 2=
min{j | 85 =8%n,—z+1}, yi=max{j|s{; =s{n-z+1} and
ye=max{j|sfi=s3n,—z+1} as follows.
_{sfrl ifyit+isiSmornEjsn+yi—m+zi—1,
Ul if1gisn-lorntyi—mtzigisy,,
and
_(shi—lifyetlSismor pEjSnty—mntz—l,
2"_{525 if1Si<n—lornty,—nt+n<i<y.
Then {(S1, St), (S#, S7)} is bipartite digraphical if
and only if {(T1, St —Sivunn), (T2, S5 —Smsea)} 18
bipartite digraphical, where ST —Spiny=(Sip:w),

STh@, ** * %, STosu-n) ANd S~ Sun = (Sipatn), Szosca),
“ev ¢ Sheame-n). Furthermore, tnStis - =t
and ta St - - - - Ston,.

Based on Proposition 3.2, we can obtain
easily an O(m) time algorithm for constructing a
bipartite directed graph which is similar to the
bipartite graph construction algorithm, where m
=x*(=x"). Thus we have the following theorem.

Theorem 4. For a bipartite digraphical set
of degree sequences {(St, S), (83, S7)} with Sf =
(sh,sh, ----,sh) and Sy=(si, sk -
each j=1, 2, a bipartite directed graph G with V;
-+, Vin,) having {(St, S1), (§4,S7)} as a
set of degree sequences can be obtained in O(m)

“+, 8, for
:{le’ Viz, *
time, where m=x"(=x").

4. Concluding Remarks

We have considered k-partite multidigra-
phical degree sequence problem and bipartite
digraphical one, and given the following results:

(1) For bipartite multidigraphical degree
sequence problem, the O(n) time algorithm for
determination and construction,

(2) For k-partite multidigraphical one (k=3),
the O(n) time algorithm for determination and
construction,

(3) For bipartite digraphical one, the O(n) time
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algorithm for determination and the O(m) time
algorithm for construction.

The k-partite graphical degree sequence
problem is polynomially solvable based on maxi-
mum matching algorithms®. We want to consider
the more efficient algorithm for solving the k-
partite graphical one (k= 3) for our further inves-
tigation.
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