福岡工業大学 学術機関リポジトリ

A Consideration of a Score Sequence Problem of a Tournament

メタデータ	言語: English
	出版者:
	公開日: 2021-02-26
	キーワード (Ja):
	キーワード (En): tournament, k-tournament and score
	sequence
	作成者: TAKAHASHI, Masaya
	メールアドレス:
	所属:
URL	http://hdl.handle.net/11478/00001671

A Consideration of a Score Sequence Problem of a Tournament

Masaya TAKAHASHI (Department of Office Information Systems, Fukuoka Jr. College of Technology)

SUMMARY

A sequence of nonnegative integers $S=(s_1, s_2, \dots, s_n)$ is a score sequence of a k-tournament if, for some positive integer k, there is a directed graph with vertices v_1, v_2, \dots, v_n such that $\deg^+(v_j)=s_j$ and $\deg^-(v_j)=k(n-1)-s_j$ for each $j=1,2,\dots,n$. The score sequence problem of a k-tournament is: Given some positive integer k and a sequence of nonnegative integers, determine whether it is a score sequence of a k-tournament or not. In this paper, we consider the score sequence problem of a tournament and of a k-tournament, and give efficient algorithms.

Key words: tournament, k-tournament and score sequence

1. Introduction

Let T be a directed graph. T is a k-tournament if and only if, for some positive integer k and some nonnegative integer k'≤k, T has k' edges (u, v) ((u, v) denotes the edge from u to v) and k-k' edges (v, u) for any vertex pair of $u, v \in$ T. A sequence of nonnegative integers $S=(s_1, s_2,$ \cdots , s_n) is a score sequence of a k-tournament if there is a k-tournament with vertices v_1, v_2, \cdots , v_n such that $deg^+(v_i)=s_i$ and $deg^-(v_i)=k(n-1)$ $-s_j$ for each $j=1, 2, \dots, n(deg^+(v_j))$ and $deg^-(v_j)$ are the outdegree and indegree of v_i respectively). The score sequence problem of a k-tournament is: Given some positive integer k and a sequence of nonnegative integers $S=(s_1, s_2, \dots, s_n)$, determine whether S is a score sequence of a k-tournament or not. The k=1 case of the score sequence of a k-tournament was considered by Landau¹⁰). The graphical degree sequence problems and the variations of them have been considered by Havel⁹⁾, Erdös and Gallai⁴⁾, Hakimi⁶⁾, Menon¹¹⁾, Takahashi, Imai and Asano^{1, 12)} and others^{2, 3, 8)}.

In this paper, we consider the score sequence problem of a tournament and of a k-tournament, and give efficient algorithms.

2. Score Sequence Problem of a Tournament

In this section, we consider the score sequence problem of a tournament and present an efficient algorithm. We first recall the previous results. Landau¹⁰⁾ gave Proposition 2.1 and Behzad, Chartrand and Foster²⁾ gave Proposition 2.2 in the following. Their proofs can be found in a standard book of graph theory²⁾.

Proposition 2.1. Let $S=(s_1, s_2, \dots, s_n)$ be a sequence of nonnegative integers with $s_1 \le s_2 \le \dots \le s_n \le n-1$. Then S is a score sequence of a tournament if and only if

$$\sum_{i=1}^{t} s_i \ge t (t-1) / 2$$

for each $j=1, 2, \dots, n$, with equality holding for

t=n.

Proposition 2.2. Let $S=(s_1,s_2,\cdots,s_n)$ be a sequence of nonnegative integers with $s_1 \le s_2 \le \cdots \le s_n \le n-1$ and let $U=(u_1,u_2,\cdots,u_{n-1})$ be a sequence of nonnegative integers obtained from S by setting $u_i=s_i$ $(j=1,2,\cdots,s_n)$ and $u_i=s_i-1$ $(j=s_n+1,\cdots,n-1)$. Then S is a score sequence of a tournament if and only if U is a score sequence of a tournament.

Based on Proposition 2.1, we can determine whether $S=(s_1,s_2,\cdots,s_n)$ is a score sequence of a tournament or not in O(n) time. Furthermore, if S is a score sequence of a tournament and $s_1 \le s_2 \le \cdots \le s_n \le n-1$, then a tournament with S as a score sequence can be obtained in $O(n^2)$ time based on Proposition 2.2.

One drawback to use Proposition 2.2 is that $u_1 \le u_2 \le \cdots \le u_{n-1}$ does not always hold in U. Thus we have to sort again to use Proposition 2.2 respectively. By the result of Takahashi, Imai and Asano¹²⁾, we can modify Proposition 2.2 to avoid sorting in the following.

Proposition 2.3. Let $S=(s_1,s_2,\cdots,s_n)$ be a sequence of nonnegative integers with $0 \le s_1 \le s_2 \le \cdots \le s_n \le n-1$ and let $U=(u_1,u_2,\cdots,u_{n-1})$ be defined by using $t=s_n+1, x=\min\{j \mid s_j=s_t\}$ and $y=\max\{j \mid s_j=s_t \text{ and } j \le n-1\}$ as follows.

$$u_{j} = \begin{cases} s_{j} - 1 & \text{if } x \leq j \leq y - t + x \text{ or } y + 1 \leq j \leq n - 1, \\ s_{j} & \text{if } 1 \leq j \leq x - 1 \text{ or } y - t + x + 1 \leq j \leq y. \end{cases}$$

Then S is a score sequence of a tournament if and only if U is a score sequence of a tournament. Furthermore, $0 \le u_1 \le u_2 \le \cdots \le u_{n-1} \le n-2$.

This proposition can be proved by the similar argument as in the proof of Proposition 2.2, and we will omit a proof here. We can obtain an algorithm for constructing a tournament based on Proposition 2.3. However, a tournament has n(n-1)/2 edges, and thus the edge-addition takes $O(n^2)$ time. Thus the algorithm also takes $O(n^2)$ time for constructing a tournament.

In the following, we present the algorithm. In the algorithm, L is initialized $L = \{j \mid s_{j-1} < s_j, j = 2, 3, \dots, n\} \cup \{0, 1, n\}$ and represented by a doubly-linked list and pre[j] < j < suc[j] for each $j \in L$,

where pre[j] and suc[j] denote the previous element and the next element of j \in L. Note that U =(u₁, u₂, ····, u_n) is initialized U=S and then maintained to satisfy $0 \le u_1 \le u_2 \le \cdots \le u_h$, $u_{h+1} = \cdots = u_n = 0$ and

$$\sum_{j=1}^{h} s_{j} = h(h-1)/2$$

 $\begin{array}{ll} \text{for each $h\!=\!2,3,\cdots,n$. L is maintained to satisfy} \\ L\!=\!\{j \mid u_{j-1}\!<\!u_j\}\!\cup\!\{0,1\}. & \text{Thus } u_{\text{pre}[j]}\!=\!u_{\text{pre}[j]+1}\!=\!\cdots\!=\!u_{j-1}\!<\!u_j\!=\!u_{j+1}\!=\!\cdots\!=\!u_{\text{suc}[j]-1} \text{ for each } j\!\in\!L. \end{array}$

Algorithm CT.

Begin

 $L:=\{0, 1\}$; For j:=1 to n do $u_j:=s_j$;

For j:=2 to n do

If $S_{i-1} \leq S_i$ then

insert j into L as the last element of L;

For h:=n downto 2 do begin

If h is not in L then

insert h into L as the last element of L; Add-edge(h); delete h from L end

End.

Procedure Add-edge(h).

Begin

q:=the last element of L;

While $u_h < q-1$ do q := pre[q];

For j:=suc[q] to h-1 do begin

add edge (v_j, v_h) ; $u_j := u_j - 1$ end;

 $q_{\text{new}} := q - u_h + \text{suc}[q] - 2;$

For $j := q_{new} + 1$ to suc[q] - 1 do add edge (v_h, v_j) ;

For j := q to q_{new} do begin

add edge (v_j, v_h) ; $u_j := u_j - 1$ end;

For j:=1 to q-1 do add edge (v_h, v_j) ;

If $u_h > q-1$ then begin

insert q_{new}+1 into L between q and suc[q];

If $u_{suc[q]-1}=u_{suc[q]}$ then

delete suc[q] from L end;

If $u_{q-1}=u_q$ then delete q from L

End.

It is easy to see that Algorithm CT correctly constructs a tournament T with S as a score sequence and that it takes $O(n^2)$ time. Thus we have the following theorem.

Theorem 1. For a sequence of nonnegative integers $S=(s_1, s_2, \dots, s_n)$, we can determine in

O(n) time whether S is a score sequence of a tournament or not²⁾. Furthermore, if $S=(s_1,s_2,\ldots,s_n)$ is a score sequence of a tournament and $0 \le s_1 \le s_2 \le \cdots \le s_n \le n-1$ then a tournament T with S as a score sequence can be constructed in $O(n^2)$ time.

3. Score Sequence Problem of a k-Tournament

In this section, we consider the score sequence problem of a k-tournament. First we can obtain the following proposition.

Proposition 3.1. Let $S=(s_1, s_2, \dots, s_n)$ be a sequence of nonnegative integers with $s_1 \le s_2 \le \dots \le s_n \le k(n-1)$. Then S is a score sequence of a k-tournament if and only if

$$\sum_{i=1}^{t} s_{i} \ge kt (t-1) / 2$$

for each $j=1, 2, \dots, n$, with equality holding for t=n.

This proposition can be proved by the similar argument as in the proof of Proposition $2.1^{2, 9}$, and we will omit a proof here. Based on Proposition 3.1, we can determine whether S is a score sequence of a k-tournament or not in O(n) time.

Next we present an algorithm for actually constructing a k-tournament for a given score sequence. Then the algorithm takes at least $O(n^2)$ time, since a k-tournament has at least n(n-1)/2 kinds of edges (i.e., $|(v_j, v_q)| + |(v_q, v_j)| = k$ for each $1 \le j < q \le n$). Thus we present the algorithm takes $O(n^2)$ time in the following. We can obtain the following proposition.

Proposition 3.2. Let $S = (s_1, s_2, \dots, s_n)$ be a sequence of nonnegative integers with $0 \le s_1 \le s_2 \le \dots \le s_n \le k(n-1)$ and let $U = (u_1, u_2, \dots, u_{n-1})$ be defined by the following algorithm. Then S is a score sequence of a k-tournament if and only if U is a score sequence of a k-tournament.

Algorithm k T.

Step 1: $R_n := k(n-1) - s_n$.

Step2: If $n \neq 3$ then do the following.

For i:=n-1 downto 1 do

 $h:=\min\{s_j, k, R_{j+1}\}, u_j:=s_j-h \text{ and } R_j:=R_{j+1}-h.$

Step3: If n=3 then do the following.

For j:=1 to n-1 do

h:=min{s_i, k, R_{j+1}}, u_j:=s_j-h and R_j:=R_{j+1}-h. **Proof.** The sufficiency is almost trivial. Let f_{jn} =s_j-u_j for each j=1, 2, ····, n-1. If U is a score sequence of a k-tournament and H is a k-tournament with U as the score sequence, then the k-tournament T obtained from H by adding f_{jn} edges (v_j, v_n) and k- f_{jn} edges (v_n, v_j) for each j=1,2, ····, n-1, has S as a score sequence.

The necessity can be obtained as follows. Let T be a k-tournament with S as a score sequence. If T contains f_{jn} edges (v_j, v_n) and $k - f_{jn}$ edges (v_n, v_j) for each $j = 1, 2, \cdots, n-1$, then the k-tournament H obtained from T by deleting v_n has U as a score sequence. If n = 2 then this argument always holds. Hence we assume that $n \ge 3$ and that T contains g_{tn} edges (v_t, v_n) with $g_{tn} < f_{tn}$ for some t with $1 \le t \le n-1$. Then we have $R_n > 0$ and T contains g_{hn} edges (v_h, v_n) with $g_{hn} > f_{hn}$ for some t with $1 \le h \le n-1$.

Let $g_{jn}=|\{(v_j,v_n)\}\in T|$ for each $j=1,2,\cdots,n-1$. Let $X=\{v_j\mid g_{jn}< f_{jn}, 1\leq j\leq n-1\}$, $W=\{v_j\mid g_{jn}= f_{jn}, 1\leq j\leq n-1\}$ and $Y=\{v_j\mid g_{jn}> f_{jn}, 1\leq j\leq n-1\}$. Then T has at least one edge (v_h,v_n) for a vertex $v_h\in Y$ since $g_{hn}> f_{hn}\geq 0$, and has at least one edge (v_n,v_t) for a vertex $v_t\in X$ since $k-g_{tn}\geq f_{tn}-g_{tn}>0$. We consider two cases.

Case 1: Suppose $n \ge 4$. Let $z = \{j \mid R_j = 0 \text{ and } R_{j+1} > 0 (1 \le j \le n-1)\}$. Then we have $f_{jn} = \min \{s_j, k\}$ for each $j = z+1, \cdots, n-1, 0 \le f_{zn} \le \min \{s_z, k\}$ and $f_{jn} = 0$ for each $j = 1, 2, \cdots, z-1$, and thus we have $X \subseteq \{v_j \mid j = z, z+1, \cdots, n-1\}$ and $Y \subseteq \{v_j \mid j = 1, 2, \cdots, z\}$, where $X \cup Y = \Phi$. Then we can prove that T has a directed path from v_t to v_h without v_n for some two vertices $v_t \in X$ and $v_h \in Y$ as follows. We can assume $0 \le s_{n-1} - s_1 \le 1$ because

$$\sum_{v_t \in X} deg^+(v_t) \! = \! \sum_{v_t \in X} s_t$$

is minimum. Thus we have

$$\left(\sum_{j=1}^{n-1} s_j\right)/(n-1) = \frac{kn}{2} - \frac{s_n}{(n-1)}$$

and

 $\sum_{v_t \in X} deg^+(v_t) = \sum_{v_t \in X} s_t \ge (kn/2 - s_n/(n-1))|X|.$

Furthermore, we assume that $T-v_n$ does not contain an edge (v_t, v') for any two vertices $v_t \in X$ and $v' \in X$. Then we have

$$\sum_{v_t \in X} deg^+(v_t) = k|X|(|X|-1)/2 + \sum_{v_t \in X} g_{tn}$$

$$\begin{split} \sum_{v_t \in X} g_{tn} & \ge (kn/2 - s_n/(n-1))|X| - k|X|(|X|-1)/2 \\ & = k|X|(n-|X|+1)/2 - (|X|/(n-1)) s_n. \end{split}$$

Hence we obtain $g' = k(n - |X| + 1)/2 - s_n/(n-1) \ge k(n-|X|-1)/2$, where g' is the average of g_{tn} . We consider two cases.

Case 1-A: If $n-|X|-1 \ge 2$ then $g' \ge k$ holds and contradicts $g_{tn} < f_{tn} \le k$.

Case 1-B: Suppose n-|X|-1=1. Then we have |W|=0, |Y|=1 and $g'\ge k/2$. Let $Y=\{v_h\}$. Since $s_n\ge s_h$ and $T-v_n$ does not contain an edge (v_t,v') for any two vertices $v_t\in X$ and $v'\in X$, we have $deg^+(v_h)=s_h=g_{hn}+k(n-2)$ and $s_n\ge g_{hn}+k(n-2)$. Thus we obtain

$$\begin{split} \sum_{v_t \in X} g_{tn} + g_{hn} &= k(n-1) - s_n \leq k(n-1) - g_{hn} - k(n-2) \\ &= k - g_{hn}, \text{ and } \end{split}$$

$$\sum_{v \in V} g_{tn} \leq k - 2g_{hn}$$
.

Since |X|=n-2 and $k/2 \le g'$, we obtain

 $k(n-2)/2 \leq \sum_{v_t \in X} g_{tn} \leq k - 2g_{hn}$

and $g_{hn} \le 2k - kn/2$. Thus $g_{hn} \le 0$ holds and contradicts $0 \le f_{hn} < g_{hn}$, since $n \ge 4$.

Hence, by Case 1-A and 1-B, $T-v_n$ contains an edge (v_t, v') for some two vertices $v_t \in X$ and $v' \notin X$. We consider two cases.

Case 1-C: If $v' \in Y$ then T has a directed path from v_t to v_h without v_n for some two vertices $v_t \in X$ and $v_h \in Y$, and thus, has a directed cycle containing (v_h, v_n) and (v_n, v_t) for some two vertices $v_t \in X$ and $v_h \in Y$.

Case 1-D: Suppose $v' \in W$. Let $W' = \{v' | (v_t, v'), v_t \in X \text{ and } v' \in W\}$. By setting $X := X \cup W'$ and W := W - W' and repeating the argument above, we can finally obtain that T has a directed path from v_t to v_h without v_n for some two vertices $v_t \in X$ and $v_h \in Y$, and thus, has a directed cycle containing (v_h, v_n) and (v_n, v_t) for some two vertices $v_t \in X$ and $v_h \in Y$.

Let E_1 be an edge set of the directed cycle. Let $E_2 = \{(u, v) | (v, u) \in E_1\}$. Then $T' = (T \cup E_2) - E_1$ has also $S = (s_1, s_2, \dots, s_n)$ as a score sequence. By setting T := T' and repeating the argument above, we can finally obtain a k-tournament T which contains f_{jn} edges (v_j, v_n) for each $j = 1, 2, \dots, n-1$.

Case 2: Suppose n=3. Then we have $|f_{12} - g_{12}| = |f_{13} - g_{13}|$ and $s_1 \le k$. We consider two cases.

Case 2-A: Suppose $R_3 \le s_1$. Since $f_{13} = R_3$ and $f_{12} = 0$, we have $f_{13} > g_{13}$, $f_{12} < g_{12}$ and $|(v_1, v_2)| = s_1 - g_{13} = s_1 - f_{13} + (f_{13} - g_{13})$. Furthermore, we have $|(v_1, v_2)| \ge f_{13} - g_{13}$ since $s_1 - f_{13} \ge 0$. Let T' be a k-tournament obtained as follows:

- (1) Delete $f_{13} g_{13}$ edges (v_3, v_1) , $g_{12} f_{12}$ edges (v_2, v_3) and $f_{13} g_{13}$ edges (v_1, v_2) from T, and
- (2) Add $f_{13}-g_{13}$ edges (v_1, v_3) , $g_{12}-f_{12}$ edges (v_3, v_2) and $f_{13}-g_{13}$ edges (v_2, v_1) to the directed graph obtained by (1).

Case 2-B: Suppose $R_3 > s_1$. Since $f_{13} = s_1$ and $f_{12} = \min\{k, R_3 - s_1\}$, we have $f_{13} > g_{13}$, $f_{12} < g_{12}$ and $|(v_1, v_2)| = f_{13} - g_{13}$. Furthermore, we have $g_{12} > f_{13} - g_{13}$, since $g_{12} = \min\{k, R_3 - s_1\} + (f_{13} - g_{13})$, $R_3 - s_1 > 0$ and $\min\{k, R_3 - s_1\} > 0$. Let T' be a k-tournament obtained by (1) and (2) above.

Then, by Case 2-A and 2-B, T' also has $S=(s_1,s_2,\cdots,s_n)$ as a score sequence of a k-tournament. Set T:=T'.

Hence, by the argument above, the k-tournament H obtained from T by deleting v_n has U as a score sequence.

Algorithm kT takes O(n) time. However $u_1 \le u_2 \cdots \le u_{n-1}$ does not always hold in U. (If n=3 then $u_1 \le u_2$ always holds in U.) Thus we can obtain a k-tournament in $O(n^2)$ time for a given score sequence if we can sort in O(n) time to use Algorithm kT recursively.

We first modify Algorithm kT to sort in O(n) time

Algorithm kT-1.

Step1: $R:=k(n-1)-s_n$ and,

If R=0 then $z_1:=n$ and $z_2:=n-1$.

Step2: If $n \ge 4$ then do the following.

For j:=n-1 downto 1 do the following (a) through (c).

- (a) $h:=\min\{s_i, k, R\}, u_i:=s_i-h \text{ and } R':=R-h.$
- (b) If R > 0 and R' = 0 then $z_1 := j$ and $z_2 := j 1$.
- (c) R := R'.

Step3: If n=3 then do the following.

For j:=1 to n-1 do

h:= $\min\{s_i, k, R\}$, u_i := s_i -h and R:=R-h. Step4: If n=2 then u_i := $R-s_i$ (=0).

Then we can obtain the following proposition.

Proposition 2.5. Suppose that $n \ge 4$. Let p be any permutation of $\{1, 2, \dots, n-1\}$ and p' be any permutation of $\{z_1, z_1+1, \dots, n-1\}$. Let $U' = (u_{p(1)}, u_{p(2)}, \dots, u_{p(n-1)})$ be defined by the following algorithm. Then $u_{p(1)} \le u_{p(2)} \le \dots \le u_{p(n-1)}$, where z_1 and z_2 are integers defined by Step1 or Step2-(b) of Algorithm kT-1.

Algorithm S.

Step1: p'(j):=j for each $j=z_1, z_1+1, \dots, n-1$ and $h:=z_1$.

Step2: While $u_{p'(h)} > u_{p'(h+1)}$ do swap $\{p'(h), p'(h+1)\}$ and h:=h+1.

Step3: $h_1:=n-1$, $h_2:=z_2$ and z:=n-1.

Step4: While $h_1 \ge z_1$ and $h_2 \ge 1$ do the following (a) and (b).

(a) If $u_{p'(h_1)} \ge u_{h_2}$ then $p(z) := p'(h_1)$ and $h_1 := h_1 - 1$ else $p(z) := h_2$ and $h_2 := h_2 - 1$.

(b) z := z - 1.

Step5: If $h_1 \ge z_1$ then $\text{For } j{:=}h_1 - z_2 \, \text{downto} \, 1 \, \text{do} \, p(j){:=}p'(z_2 + j)$ else if $h_2 \ge 1$ then

For $j:=h_2$ downto 1 do p(j):=j.

Proof. By Algorithm kT-1, we have $u_j = s_j$ -k or $u_j = 0$ for each $j = z_1 + 1, \dots, n-1$, since $R > h = \min\{s_j, k\}$. Thus $u_{z_1 + 1} \le u_{z_1 + 2} \le \cdots \le u_{n-1}$. Furthermore, we have $u_j = s_j$ for each $j = 1, 2, \dots, z_2$, since R = 0. Thus $u_1 \le u_2 \le \cdots \le u_{z_2}$. Hence we obtain $u_{p(1)} \le u_{p(2)} \le \cdots \le u_{p(n-1)}$.

Based on Proposition 2.4 and 2.5, we can obtain the following iterative algorithm CkT for constructing a k-tournament T with S as a score sequence of a k-tournament.

Let K_n be the complete directed graph with vertex set $V = \{v_1, v_2, \cdots, v_n\}$ and let $N = (K_n, cap)$ be the weighted graph defined by the capacity function cap(e) = cap(e') = k for $e = (v_j, v_q), e' = (v_q, v_j), j = 1, 2, \cdots, n - 1, q = j + 1, j + 2, \cdots, n$. Since S is a score sequence of a k-tournament, N has a weight of value

$$m = \sum_{j=1}^{n} s_j$$
.

For a weight w of N of value m, we create w(e) copies of an edge $e=(v_i, v_q)$ and w(e') copies of an edge $e'=(v_q, v_i)$, $j=1, 2, \cdots, n-1$, q=j+1, j+2, \cdots , n. Then the complete directed graph H_w obtained in this way has S as a score sequence of a k-tournament. To obtain a k-tournament, we obtain a maximum weight w of N.

Let h be any integer in $\{1, 2, \dots, n\}$. Let p_1 , p'_1 and p_2 be any permutations of $\{1, 2, \dots, h\}$ and $U(h)=(u_{p_1(1)}, u_{p_1(2)}, \dots, u_{p_1(n)})$ be a sequence of nonnegative integers with

$$\sum_{i=1}^{h} u_{p_1(i)} = kh(h-1) / 2,$$

 $0 \le u_{p_1(1)} \le u_{p_1(2)} \le \cdots \le u_{p_1(h)} \le k(h-1)$ and $u_{p_1(h+1)} = \cdots = u_{p_1(n)} = 0$. In the algorithm, h is initialized h=n and U(h) is initialized U(h)=S. We assume w(e)=0 for $e \in E(K_n)$ at the beginning, where $E(K_n)$ is an edge set of K_n .

Algorithm CkT.

Begin

$$\begin{split} &U(n){:=}S; \text{ For } j{:=}1 \text{ to } n \text{ do } p_1(j){:=}j; \\ &\text{For } h{:=}n \text{ downto } 4 \text{ do begin} \\ &R{:=}k(h{-}1){-}u_{p_1(h)}; \\ &\text{ If } R{=}0 \text{ then begin } z_1{:=}h; z_2{:=}h{-}1 \text{ end}; \\ &\text{For } j{:=}h{-}1 \text{ downto } 1 \text{ do begin} \\ &\text{ } t{:=}\min\{u_{p_1(j)}, k, R\}; u_{p_1(j)}{:=}u_{p_1(j)}{-}t; \\ &u_{p_1(h)}{:=}u_{p_1(h)}{-}(k{-}t); R'{:=}R{-}t; \\ &w((v_{p_1(j)}, v_{p_1(h)})){:=}t; \\ &w((v_{p_1(h)}, v_{p_1(j)})){:=}k{-}t; \\ &\text{ If } R{>}0 \text{ and } R'{=}0 \text{ then begin} \\ &z_1{:=}j; z_2{:=}j{-}1 \text{ end}; \\ &R{:=}R' \text{ end}; \\ &\text{For } j{:=}z_1 \text{ to } n{-}1 \text{ do } p_1'(j){:=}p_1(j); t{:=}z_1; \end{split}$$

For $j:=z_1$ to n-1 do $p_1'(j):=p_1(j); t:=z_1;$ While $u_{p_1(t)}>u_{p_1(t+1)}$ do begin swap $\{p_1'(t),p_1'(t+1)\}; t:=t+1$ end;

```
t_1=h-1; t_2:=z_2; z:=h-1;
      While t_1 \ge z_1 and t_2 \ge 1 do begin
         If u_{p_1(t_1)} \ge u_{p_1(t_2)} then begin
            p_2(z) := p_1'(t_1); t_1 := t_1 - 1 \text{ end}
         else begin p_2(z) := p_1(t_2); t_2 := t_2 - 1 end;
         z:=z-1 end;
     If t_1 \ge z_1 then
         For j:=t_1-z_2 downto 1 do p_2(j):=p'_1(z_2+j)
      else if t_2 \ge 1 then
         For j:=t_2 downto 1 do p_2(j):=p_1(j);
      p_1:=p_2 end:
  R:=2k-u_{p_1(3)};
  For j:=1 to 2 do begin
      t:=\min\{u_{p_1(j)}, k, R\}; u_{p_1(j)}:=u_{p_1(j)}-t;
      u_{p_1(3)}:=u_{p_1(3)}-(k-t); w((v_{p_1(j)}, v_{p_1(3)})):=t;
      w((v_{p_1(3)}, v_{p_1(j)})) := k-t; R := R-t \text{ end};
   w((v_{p_1(1)}, v_{p_1(2)})) := u_{p_1(1)};
   W((V_{p_1(2)}, V_{p_1(1)})) := u_{p_1(2)}; u_{p_1(1)} := 0;
  u_{p_1(2)} := 0
End.
```

It is easy to see that Algorithm CkT correctly constructs a k-tournament T with S as a score sequence and that it takes $O(n^2)$ time. Thus we have the following theorem.

Theorem 2. For a sequence of nonnegative integers $S=(s_1,s_2,\cdots,s_n)$, we can determine in O(n) time whether S is a score sequence of a k-tournament or not. Furthermore, if $S=(s_1,s_2,\cdots,s_n)$ is a score sequence of a k-tournament and $0 \le s_1 \le s_2 \le \cdots \le s_n \le k(n-1)$ then a k-tournament T with S as a score sequence can be constructed in $O(n^2)$ time.

4. Concluding Remarks

We have considered the score sequence problem of a tournament and of a k-tournament, and given optimal algorithms. Especially, we have found that there is an intimate relation between the graphical degree sequence problem¹²⁾ and the score sequence problem of a tournament. Furthermore, we have presented an algorithm for constructing a tournament having a given score sequence without sorting. However, the algorithm, which is presented in this paper, for constructing a k-tournament having a given score sequence contains sorting.

For our further investigations, we will consider an algorithm for constructing a k-tournament having a given score sequence without sorting.

References

- [1] Asano, T., An O(nloglogn) Time Algorithm for Constructing a Graph of Maximum Connectivity with Prescribed Degrees, Technical Report, ISETR93-02, Department of Information and System Engineering, Chuo University, 1993.
- [2] Behzard, M., Chartrand, G. and Foster, L.L. -, "Graphs and Digraphs," Prindle, Weber and Schmidt, 1979.
- [3] Chen, Y.K., "Applied Graph Theory (Second Revised Edition)," North-Holland, 1976.
- [4] Erdös, P. and Gallai, T., *Graphs with Prescribed Degrees of Vertices* (Hungarian), Mat. Lapok, Vol. 11, pp. 264-274, 1960.
- [5] Ford, Jr, L.R. and Fulkerson, D.R., "Flows in Networks," Princeton University Press, 1962.
- [6] Hakimi, S.L., On the Realizability of a Set of Integers as Degrees of the Vertices of a Graph, J. SIAM Appl. Math., Vol. 10, pp. 496– 506, 1962.
- [7] Hakimi, S.L. and Moser, L., *The Theory of Round Robin Tournaments*, Amer. Math. Monthly 73, pp. 231-246, 1966.
- [8] Harary, F., "Graph Theory," Addison-Wesley, 1969.
- [9] Havel, V., A Remark on the Existence of Finite Graph (Hungarian), Časopis Pest., Mat., Vol. 80, pp. 477-480, 1955.
- [10] Landau, H.G., On Dominance Relations and the Structure of Animal Societies, III., The Condition for a Score Structure, Bulletin for Mathematical Biophysics, Vol. 15, pp. 143-148, 1953.
- [11] Menon, V.V., On the Existence of Trees with

Given Degrees, Sankhyã, Series A, 26 (1964), pp. 63-68.

[12] Takahashi, M., Imai, K. and Asano, T.,

Graphical Degree Sequence Problems, IEICE Trans. Fundamentals., Vol. E77-A. No. 3 (March), pp. 546-552, 1994.