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A Consideration of a Score Sequence Problem

of a Tournament

Masaya TAKAHASHI (Department of Office Information Systems, Fukuoka Jr. College of Technology)

SUMMARY

A sequence of nonnegative integers S=(s, sz, - -
ment if, for some positive integer k, there is a directed graph with vertices vi, vz, * *

-+, sn) is a score sequence of a k-tourna-
-+, Va such

that deg*(v;)=s; and deg~(v;))=k(n—1)—s; for each j==1, 2, - - - -, n. The score sequence problem
of a k-tournament is: Given some positive integer k and a sequence of nonnegative integers,

determine whether it is a score sequence of a k-tournament or not. In this paper, we consider

the score sequence problem of a tournament and of a k-tournament, and give efficient

algorithms.

Key words : fournament, k-tournament and score sequence

1. Introduction

Let T be a directed graph. T is a k-tourna-
ment if and only if, for some positive integer k
and some nonnegative integer k'<k, T has kK
edges (u, v) ({u, v) denotes the edge from u to v)
and k-k" edges (v, u) for any vertex pair of u, v&
T. A sequence of nonnegative integers S=(sy, sz,
-++- sp) is a score sequence of a k-towrnament if
there is a k-tournament with vertices vi, vz, -,
va such that deg*(vy)=s; and deg (v;)=k(n—1)
—s; for each j=1, 2, - - - -, n{(deg*(v;) and deg™(v;)
are the outdegree and indegree of v; respectively).
The score sequence problem of a k-tournament is:
Given some positive integer k and a sequence of
nonnegative integers S=(si, Sz, -+, 5n), deter-
mine whether S is a score sequence of a k-tourna-
ment or not. The k=1 case of the score sequence
of a k-tournament was considered by Landau!®.
The graphical degree sequence problems and the
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variations of them have been considered by
Havel®, Erdss and Gallai®, Hakimi®, Menon!?,
Takahashi, Imai and Asano®*® and others® * ®.

In this paper, we consider the score sequence
problem of a tournament and of a k-tournament,
and give efficient algorithms.

2. Score Sequence Problem of a Tournament

In this section, we consider the score
sequence problem of a tournament and present an
efficient algorithm. We first recall the previous
results. Landau'® gave Proposition 2.1 and Beh-
zad, Chartrand and Foster® gave Proposition 2.2
in the following. Their proofs can be found in a
standard book of graph theory®.

Proposition 2.1. Let S=(s1,8s, ****,sa) bea
sequence of nonnegative integers with s;Ss<
«+++Z=s,=n—1. Then S is a score sequence of a
tournament if and only if

t
j:Z‘isj_zt t-1/2
for each j=1, 2, - - - -, n, with equality holding for




-+ sp)bea
sequence of nonnegative integers with s;=<s,=
<o+ Zsa=n—1 and let U=(uy, uy, - -

sequence of nonnegative integers obtained from S

Proposition 2.2. Let S=(s,, sz, - -
-+, Un1) be a

by setting u;=s; =1, 2, -+ - -, sn) and u;=s;—1(j=
sa+1, -+, n—1). Then Sis a score sequence of a
tournament if and only if U is a score sequence of
a tournament.

Based on Proposition 2.1, we can determine
whether S=(sy, sz, * * * *, sn) is a score sequence of
a tournament or not in O(n) time. Furthermore, if
S is a score sequence of a tournament and s1=s.
Z--.--=Zsy=n—1, then a tournament with S as a
score sequence can be obtained in O(n?) time
based on Proposition 2.2.

One drawback to use Proposition 2.2 is that u;
SWp= - - - SUn-; does not always hold in U. Thus
we have to sort again to use Proposition 2.2
respectively. By the result of Takahashi, Imai
and Asano*?, we can modify Proposition 2.2 to
avoid sorting in the following.

Proposition 2.3. Let S=(s), sz, - -
sequence of nonnegative integers with 0=s,<s,=
oo Zs,=n—1 and let U=(u;,ug, -

defined by using t=sn+1, x=min{j |s;=s} andy

-+ sp)bea
-+, Un-1) be

=max{j s;=s: and j<n—1} as follows.

_(s—1 ifxfigy—t+xory+l£isn—1,
u””{s,- if1<j<x—1or y—t+x+1=<j<y.
Then S is a score sequence of a tournament if and
only if U is a score sequence of a tournament.

Furthermore, 02w, == Sup =n—2.

This proposition can be proved by the similar
argument as in the proof of Proposition 2.2, and
we will omit a proof here. We can obtain an
algorithm for constructing a tournament based on
Proposition 2.3. However, a tournament has n(n
—1)/2 edges, and thus the edge-addition takes
O(n?) time. Thus the algorithm also takes O(n?)
time for constructing a tournament.

In the following, we present the algorithm. In
the algorithm, L is initialized L={j | s;-1<s;, i=2,
3, ---+,ntU{0, 1, n} and represented by a doubly-
linked list and pre[jl<j<suc[j] for each j€L,
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where pre[j] and suc[j] denote the previous ele-
ment and the next element of j&L.. Note that U

=(ug, Uz, *- -+, uy) is initialized U=S and then
maintained to satisfy 0SwiSuw= -+ Sup, Upn1=
s =U,~=0 and

h

jZ}IS,:h th-1)/2
foreachh=2, 3, ----, n. L is maintained to satisfy
L={|uja<uU{0,1}. Thus Upren=Uprem+1=
e :U.j—1<u1':u5+1: c s =Ugyeli)-1 for each ]EL

Algorithm CT.

Begin

L:={0, 1}; For j-=1 to n do u;=s;j;
For j:=2 to n do
If 55-1<s; then
insert j into L as the last element of L;
For h:=n downto 2 do begin
If h is not in L then
insert h into L as the last element of L;
Add-edge(h); delete h from L end
End.
Procedure Add-edge(h).
Begin

q:=the last element of L;

While uy<q~—1 do q:=pre[q];

For j:=suc[q] to h—1 do begin

add edge (v, va); uj;=u;—1 end;
Qrew:=q —un+suclq] —2;
For j:=qnew+1 to suc[q]—1 do add edge (v, v3);
For j:=q to Qnew do begin
add edge (vi, vu); u;;=u;—1 end;

For j:=1 to q—1 do add edge (v, vj);

If un>q—1 then begin
insert duew+1 into L between q and suclq];
If Usucia)-1=Usuciq then

delete suc[q] from L end;
If uq—1=uq then delete q from L
End.

It is easy to see that Algorithm CT correctly
constructs a tournament T with S as a score
sequence and that it takes O(n®) time. Thus we
have the following theorem.

Theorem 1. For a sequence of nonnegative

integers S=(sy, Sz, *** , Sn), we can determine in
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O(n) time whether S is a score sequence of a
tournament or not?. Furthermore, if S=(s;, ss,
-+, sa) is a score sequence of a tournament and
0=si=s2=----=sp=n—1 then a tournament T
with S as a score sequence can be constructed in
O(n?) time.

3. Score Sequence Problem of a k-Tournament

In this section, we consider the score
sequence problem of a k-tournament. First we
can obtain the following proposition.

-, 8n) bea
sequence of nonnegative integers with s;1=s,=

Proposition 3.1. Let S=(s,, s, * -

<o+ Zs,=k(n—1). Then S is a score sequence of
a k-tournament if and only if

jgsjgkt t—1)/2

for each j=1, 2, - - - -, n, with equality holding for
t=n. ‘

This proposition can be proved by the similar
argument as in the proof of Proposition 2.1% %,
and we will omit a proof here. Based on Proposi-
tion 3.1, we can determine whether S is a score
sequence of a k-tournament or not in O(n) time.

Next we present an algorithm for actually
constructing a k-tournament for a given score
sequence. Then the algorithm takes at least O(n?)
time, since a k-tournament has at least n(n—1)/2
kinds of edges (i.e., |(vi, va)| +{(vq, vs)|=k for each
1=£j<q=n). Thus we present the algorithm takes
O(n? time in the following. We can obtain the
following proposition.

Proposition 3.2. LetS=(s;, s, '
sequence of nonnegative integers with 0=s,;=s,<
<o Zep=k(n—1) and let U=(uy, uz, -, Ua_1) be
defined by the following algorithm. Then S is a
score sequence of a k~tournament if and only if U

<+, sa)bea

is a score sequence of a k-tournament.
Algorithm k T.
Stept: Ra=k(n—1)—sn.
Step2: If n#*3 then do the following.
For j;=n—1 downto 1 do

hzzmin{sj, k, Rj+1}, Uji:Sj—h and RjZ=R3+1_h.
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Step3: If n=3 then do the following.
For j:=1 to n—1 do
h:=min{s;, k, Rj+1}, us=s;—h and R;=R;;;—h.

Proof. The sufficiency is almost trivial. Let
fin=s;—u; for each j=1,2,---,n—1. If Uis a
score sequence of a k-tournament and H is a k-
tournament with U as the score sequence, then the
k-tournament T obtained from H by adding fia
edges (vj, va) and k—f;n edges (vn, v;) for each j=
1,2, --++-,n—1, has S as a score sequence.

The necessity can be obtained as follows. Let
T be a k-tournament with S as a score sequence.
If T contains f;, edges (vj, va) and k—f;, edges (vn,
v;) for each j=1, 2, ---+,n—1, then the k-tourna-
ment H obtained from T by deleting v, has U as
a score sequence. If n=2 then this argument
always holds. Hence we assume that n=3 and
that T contains gw edges (vi, va) with g <fu, for
some t with 1=t=n-—1. Then we have R,>0 and
T contains gun edges (vu, Vo) With gmn>fan for
some h with IShsn-—1.

Let gin=|{(v;, va)}E€T| for eachj=1,2, -, n
—1. Let X={vjlgn<fm 1=isn—1}, W={v;|gn
=fin, 1£j€n—1} and Y={vj |gn>fn, I<j=n—1}.
Then T has at least one edge (vu, vn) for a vertex
va€ Y since gnn >fan=0, and has at least one edge
(v, Vo) for a vertex viEX since k—gun=fm—gn>
0. We consider two cases.

Case 1: Suppose n=4. Let z={j |R;=0 and
Ri+1>0(1=j2n—1)}. Then we have fi=min{s;,
k} for each j=z+1, ---+,n—1, 0=f,n=min{s,, k}
and f;,=0 for each j=1,2, ----, z—1, and thus we
have X<{v;|j=z z+1, - -, n—1} and YE{v;|]j
=1,2, -+, z}, where XUY=®. Then we can
prove that T has a directed path from v¢ to v
without va for some two vertices vi&X and viE
Y as follows. We can assume 0=sn-.1—s1=1
because

Vé‘.x deg*(vt)=vé‘.x St

is minimum. Thus we have
(nill Sj)/(n—l)an/Z—Sn/(n—l)
&=

and
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2, deg*(v)= 3 siz(kn/2—ss/(n— MIXI.

Furthermore, we assume that T—v., does not
contain an edge (v, v') for any two vertices vi€X
and v'&X. Then we have

Vgx deg*(vy)=Kk|XI(|X|—-1)/2 +v§X g

and
vaX gz (kn/2—s./(n— X} —KkIX|(X|-1)/2

=k[X|(n—|X]+1)/2—(X|/(a—1)) sn.
Hence we obtain g’ =k(n— [X|+1)/2—ss/(n—1)=
k(n—|X|—1)/2, where g is the average of gw.. We
consider two cases.

Case 1-A: If n—|X|—1=2 then g'=k holds
and contradicts gin<fm=k.

Case 1-B: Suppose n—|X|—1=1. Then we
have |W|=0,|Y|=1 and g'=k/2. Let Y={vu}.
Since sn=sy, and T vy does not contain an edge
(vi, v) for any two vertices vi&X and v&X, we
have deg™(vu)=sn=gm+k(n—2) and sSn=gm
+k(n—2). Thus we obtain

2, gntgm=k(n—1)—si=k(n—1)—gm—k(n—2)

=Kk —gun, and
VZEIX gn=k—2gnn.

Since |X|=n—2 and k/2=<g’, we obtain
k(n—-Z)/ZévZE:x Zin=Kk—28un

and g =2k —kn/2. Thus gnn=0 holds and contra-
dicts 0=fn,<gnn, since n=24.

Hence, by Case 1-A and 1-B, T-v, contains
an edge (v, v') for some two vertices vi€X and v/
&X. We consider two cases.

Case 1-C: If vEY then T has a directed
path from v: to vs without v» for some two ver-
tices vi&X and vi&€Y, and thus, has a directed
cycle containing (va, va) and (va, v¢) for some two
vertices viEX and viEY.

Case 1-D: Suppose vEW. Let W={v](v,,
V), vv&X and vEW]}. By setting X:=XUW" and
W:=W—W’ and repeating the argument above,
we can finally obtain that T has a directed path
from v to vy without v, for some two vertices vt
X and vi€Y, and thus, has a directed cycle
containing (va, vo) and (va, vi) for some two ver-
tices vi€EX and viEY.
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Let E: be an edge set of the directed cycle.
Let Ex={(u, v)|(v, u)€E,}. Then T'=(TUE:)—E;
has also S=(s1, sz ***+,Sn) aS a score sequence.
By setting T:=T and repeating the argument
above, we can finally obtain a k-tournament T
which contains fi edges (vj, va) for each j=1, 2,
<o n—1

Case 2: Suppose n=3. Then we have |fi
—g|=lfis—gis] and s;£k. We consider two
cases.

Case 2-A: Suppose R:=si. Since fiz3=R;
and f12=0, we have f13> g3, f12< g2 and |(v1, v2)|=
s1—gu=s1—his+ (fis—gis). Furthermore, we have
[(v1, Vo)l Zfis—gus since si—fis=0. Let T'be a k-
tournament obtained as follows:

(1) Delete fis—gis edges (vs, vi), gi2—f12 edges
(v2, vs) and fis—g1s edges (vi, v2) from T, and

(2) Add fis—g1s edges (vy, vs), g12—f12 edges (vs,
v2) and fi3— g1s edges (vz, vi1) to the directed graph
obtained by (1).

Case 2-B: Suppose Ri;>si.  Since fis=s:
and fi.=min{k, Rs—si}, we have fis>gu, f12<g12
and |[(vy, v2)]=fis—g1s. Furthermore, we have g
>f15—gus, since giz=min{k, Rs—s:}+{fis—g13), Rs
—1>0 and minfk, Rs—si}>0. Let T be a k-
tournament obtained by (1) and (2) above.

Then, by Case 2-A and 2-B, T’ also has S=
(s1, Sz, -, sn) as a score sequence of a k-tourna-
ment. Set T:=T".

Hence, by the argument above, the k-tourna-
ment H obtained from T by deleting v, has U as
a score sequence. B

Algorithm kT takes O(n) time. However u; =
Uz * * - SUn-; does not always hold in U. (If n=3
then wi£u, always holds in U.) Thus we can
obtain a k-tournament in O(n®) time for a given
score sequence if we can sort in O(n) time to use
Algorithm kT recursively.

We first modify Algorithm kT to sort in O(n)
time.

Algorithm kT-1.
Stepl: R:=k(n—1)—sn and,

If R=0 then z;:=n and zx=n—1.
Step2: If n=4 then do the following.
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For j;=n—1 downto 1 do
the following (a) through (c).
(@) h:=min{s;, k, R},us=s;—hand R;=R—h.
(b) HR>0and R'=0then z;;=jand zz:=j—1.
(¢) R:=R.
Step3: If n=3 then do the following.
For j;=1ton—1 do
h:=min{s;, k, R}, u;;=s;—h and R:=R—h.
Stepd: I n=2 then upz=R—s,(=0).

Then we can obtain the following proposi-
tion.

Proposition 2.5. Suppose that n=4. Let p
be any permutation of {1,2, ----,n—1} and p’ be
any permutation of {z;, zi+1, -+, n—1}. Let U’
=(Upq, Up@, * * * *, Up(n-1)) be defined by the follow-
ing algorithm. Then wm=upn=-- - SUpm-1),
where z, and z, are integers defined by Stepl or
Step2-(b) of Algorithm kT-1.

Algorithm S.
Stepl: p{(j):=j for each j=z;, z1+1, ----,n—1
and h:=z,.

Step2:  While tpm) > Uprheny do
swap {p'(h), p(h+1)} and h:=h+1.
Step3: hii=n—1, hy=2z, and z:=n—1.
Stepd: While hy=2z; and h,=1 do
the following (a) and (b).
(@) I uprn,) = un, then
p(z):=p'(hy) and hu=h,—1
else p(z):=h: and hs:=h,—1.
(b) z=z—1.
Step5s: I hi=z;, then
For j;=h;—z, downto 1 do p(3):=p(zz+j)
else if he=1 then
For j:=h; downto 1 do p(j):=j.
Proof. By Algorithm kT-1, we have u;=s;
-~k or u;=0 for each j=z;+1, -+--, n—1, since R
>h=min{s;, k}.
Furthermore, we have u;=s; for each j=1,2, -+ -+,
2z, since R=0. Thus yy=u=- -+ =u,. Hence we

Thus Uz+1SUz42S - SUp-1.

obtain Up)SUp@ ="' Zlpn-1). B

Based on Proposition 2.4 and 2.5, we can
obtain the following iterative algorithm CkT for
constructing a k-tournament T with S as a score
sequence of a k-tournament.
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Let K. be the complete directed graph with
vertex set V={vy, vz, -*--,va} and let N=(K,,
cap) be the weighted graph defined by the capa-
city function cap(e)=cap(e)=k for e=(v;, vq), €
=(vq,vy),i=1,2,--,n—1,q=j+1,j+2, -+, n
Since S is a score sequence of a k-tournament, N
has a weight of value

m=g sj.
For a weight w of N of value m, we create w(e)
copies of an edge e=(v}, vq) and w{e") copies of an
edge €=(vqvy),i=12, - -, n—1, q=j+1,j+2,

--,n. Then the complete directed graph Hy
obtained in this way has S as a score sequence of
a k-tournament. To obtain a k-tournament, we
obtain a maximum weight w of N.

Let h be any integer in {1,2, ---+,n}. Let p,
P’ and pz be any permutations of {1, 2, -+ -+, h} and
U(h)=(up, Ups2y, """, Upum) be a sequence of

nonnegative integers with
h
j:z‘i up=kh(h—1)/ 2,

0§Up,(1)§um(z)§ R éum(h)ék(h_l) and Upi(h+1)
=+ =Up,m=—0. Inthe algorithm, h is initialized
h=n and U(h) is initialized U(h)=S. We assume
wle)=0 for e=E(K,) at the beginning, where
E(X.) is an edge set of Kn.
Algorithm CkT.
Begin
U(n):=S; For j:=1 to n do p:(j):=j;
For h:=n downto 4 do begin
R:=k(h~1)—up1<m;
If R=0 then begin z;:=h; z:=h—1 end;
For j:=h—1 downto 1 do begin
t:=min{tp., k, R} s =tp,n—t;
Upyny: =Upymy — (K —t)}; R =R—t;
W((Vaus, Veum)):=t;
wW{(Veum, Veua))i=k —t;
If R>0 and R'=0 then begin
z1:=]; zz:=]—1 end;
R:=R’ end;
For j:=z; to n—1 do pi(i):=pi(§); ti=2z3;
While upyt) >Upye+1y) do begin
swap {pi(t), pit+1)}; t:=t+1 end;
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ti=h—1;t2:=2zsz:=h~—1,;
While t; =2, and t,=1 do begin
If Upi(t) 2 Upyt) then begin
pz):=pi(t); t:=t;—1 end
else begin px(z):=pi(tz); ta=t2—1 end;
z:=z~—1 end;
If ti=2z then
For j:=t;—z; downto 1 do p(j):=pi(zz+j)
else if t,z1 then

For j:=t, downto 1 do p(j):=p:(j);

D1:=D2 end;

R:=2k —up,);

For j;=1 to 2 do begin
t:=min{up.e), K, R} Upu:=Upi —t;

Upi@: =Ups® — (kK —1); W((Vor, Voua)):=t;

W((Vpi (3, Vorn)):=k—t; Ri=R—t end;

W{(Vei1), Vor@)):=Upscry;

W((Vos@), Ver)): =Upi@; Upyy:=0;

Up,(2: =0
- End.

It is easy to see that Algorithm CkT cor-
rectly constructs a k-tournament T with S as a
score sequence and that it takes O(n®) time. Thus
we have the following theorem.

Theorem 2. For a sequence of nonnegative
integers S=(s1, Sz, ** '+, Sn), we can determine in
O(n) time whether S is a score sequence of a k-
tournament or not. Furthermore, if S=(s1, s,
-+, sq) is a score sequence of a k-tournament
and 0<s;Ss:=----Esp=k(n—1) then a k-tour-
nament T with S as a score sequence can be
constructed in O(n?) time.

4. Concluding Remarks

We have considered the score sequence prob-
lem of a tournament and of a k-tournament, and
given optimal algorithms. Especially, we have
found that there is an intimate relation between
the graphical degree sequence problem'? and the
score sequence problem of a tournament.
Furthermore, we have presented an algorithm for
constructing a tournament having a given score
sequence without sorting. However, the algo-
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rithm, which is presented in this paper, for con-
structing a k-tournament having a given score
sequence contains sorting.

For our further investigations, we will con-
sider an algorithm for constructing a k-tourna-
ment having a given score sequence without sort-
ing.
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