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Abstract

In Opportunistic Networks (OppNets) the contacts between Internet of Things (IoT) de-

vices (nodes) are intermittent and links are highly variable. Upon receiving a message a

device will store it in the buffer until another node comes in the transmission range or a

forwarding opportunity exists. The IoT network consists of connected physical objects

and devices with high mobility. By using the mobility of IoT devices, the OppNets pro-

vide a self-organizing network as a communication opportunity. The IoT devices generate

and exchange a huge amount of data through heterogeneous networks and OppNets ease

the concept of heterogeneity with their independence on decentralized infrastructure. The

IoT network consists of different devices with different resource capabilities. When mul-

tiple IoT devices are deployed densely, there is a possibility that a node may reside in the

coverage area of multiple devices. Thus, when a task requires an IoT device to complete

it, it is very important to find the best device for that specific request. The IoT devices

should be selected based on different parameters in order to achieve better network con-

nectivity, stability and user coverage. In OppNets an end-to-end path between source and

destination may not exist and network partitions occur often. Some of the most common

issues for OppNets are energy consumption, storage constraint, limited contact oppor-

tunities and finding an optimal and robust topology of the network devices to support

connectivity services to events. To deal with these issues many parameters should be con-

sidered which make the problem NP-Hard. Thus, the heuristic and intelligent algorithms

are good solutions. In this research work, we consider IoT device selection in OppNets

and propose new parameters and implement different intelligent systems based on Fuzzy

Logic (FL). The proposed systems can be used in different environments and applications.

We carried out many simulations and found that the performance of implemented systems

is good. We observed that the complexity of the systems increases with the increase of

the number of parameters. We also implemented a testbed and performed experiments

in order to compare the simulation and experimental results. The experimental results
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show that the implemented testbed makes a good selection of IoT devices. This thesis

contributes in the research field as following: 1) Proposal of new parameters for IoT de-

vice selection in OppNets. 2) Proposal and implementation of intelligent systems based

on FL for appropriate selection of IoT devices in OppNet. 3) Performance evaluation of

implemented systems for different parameters and scenarios. 4) Comparison of imple-

mented intelligent simulated systems. 5) Implementation of a testbed for OppNet and its

application in a real scenario. 6) Give insights about future developments and application

of OppNets and IoT as important technologies for wireless communications. This thesis

is constructed with 9 chapters. In Chapter 1 is presented the background, motivation and

thesis structure. Chapter 2 introduces the next generation wireless networks and describes

in more details 5G cellular network technologies, Software-Defined Wide Area Network

(SDWAN) and Mobile Ad-hoc Networks (MANETs). In Chapter 3, we introduce the ar-

chitecture, challenges and applications of IoT and OppNets. In Chapter 4, we introduce

Intelligent Algorithms. In Chapter 5, we present Fuzzy Logic. In Chapter 6, we introduce

our proposed Fuzzy-based intelligent systems for IoT device selection in OppNets. In

Chapter 7, are shown the performance evaluation results of proposed simulation systems.

In Chapter 8, we present the testbed implementation and evaluation. In Chapter 9, we

conclude this thesis and give the future work.
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Chapter 1

Introduction

1.1 Background

Future communication systems are going to be increasingly complex, with thousands of

heterogeneous nodes with diverse capabilities and different technologies interconnected

with the aim of providing users ubiquitous access to information and advanced services

at a high quality level at any place and time in a cost efficient manner. Opportunistic

Networks (OppNets) provide an alternative way to support the diffusion of information

in special locations within a city, particularly in crowded spaces where current wireless

technologies can exhibit congestion issues. OppNets are an extension of Mobile Ad-

hoc Networks (MANETs) so they face some issues similar to MANET such as limited

bandwidth, disconnections and variable links. It starts as a seed network consisting of

an original set of nodes and expands by growing to a larger network with new nodes

consistently becoming part of the network. Nodes may be static or fixed so this makes

the network easy to deploy since it’s not dependent on infrastructure, making OppNets

suitable for interplanetary communications, terrestrial wireless networks, mobile sensor

networks and so on.

The OppNets are variants of Delay Tolerant Networks (DTNs) which is a class of

networks that has emerged in the recent times. Routing is a very challenging task due to

un-connected nature, sparse connectivity, limited resources and no infrastructure. Rout-

ing methods depend on schemes that utilize node mobility by having the node carry the

message and wait for an opportunity to transfer the message to the next node rather than

transmitting them over a fixed source-to-destination path.

1



1. Introduction

Internet of Things (IoT) is a network of devices which collect and exchange data and

than act on this information. IoT is the consistently growing network of objects which

connect the physical world with the virtual one. These objects generate huge amount of

data which travels through different networks.

1.2 Thesis Purpose and Contribution

In this thesis by considering the challenges of selecting an IoT device in OppNets, we

proposed and implemented four simulation systems and one testbed based on Fuzzy Logic

(FL). In an OppNet scenario, IoT devices will create a seed network and later add helpers

when an event that needs action happens. Based on the resources each network device

has, some will be better suited than others for acting upon the event. These resources are

measured by the parameters each device has. To be able to provide effective help, these

parameters are used as inputs on our proposed systems and decisions are made based on

usability of each device.

In this work, we have proposed a meta-heuristic platform based on FL for choosing

the best IoT device to perform a task based on specific parameters that apply to OppNets

challenges. Parameter combination varies for each proposed and implemented system

because we have consistently tried to consider many scenarios and optimize the proposed

system by selecting new parameters.

The first system we have proposed is IoT Device Selection System 1 (IDSS1), which

uses three input parameters: IoT Device Speed (IDS), IoT Device Remaining Energy

(IDRE), IoT Device Distance from Task (IDDT). For our second system IoT Device Se-

lection System 2 (IDSS2), we decided to increase its complexity by adding a fourth pa-

rameter IDS, IDDT, IDRE, IoT Device Storage (IDST). In our third system IoT Device

Selection System 3 (IDSS3), we decided to use four parameters: IoT Device Waiting

Time (IDWT), IoT Device Security (IDSC), IDRE, IDST. Different from our second sys-

tem, in IDSS3 we have considered the waiting time and security of a device as two new

parameters. In an OppNet scenario, where an event is taking place the effectiveness of

completing said event is eased by having a device with many connections. These con-

nections increase the chances of discovering new helpers which may become essential to

complete the task. We have summarized this device property in one parameter, IoT De-

vice Node Centrality (IDNC) which is included in the fourth system, IoT Device Selection

System 4 (IDSS4). In IDSS4 we have four input parameters: IDNC, IDWT, IDRE, IDST.

2



1. Introduction

Based on input parameters, our proposed systems give the possibilities of each device to

be selected as our output parameter IoT Device Selection Decision (IDSD). Comparing

complexity of IDSS1 with IDSS2, IDSS3 and IDSS4, the systems with four parameters

are more complex than IDSS1 since they need more computational resources.

With simulation systems we are able to emulate different scenarios but to gain a fur-

ther insight into a real life system, a testbed is the best choice. A simulation system only

focuses on a subset of properties of the real system while the testbed tests a system behav-

ior based on certain inputs and reflects a more realistic scenario. We have implemented

a simulation system for selecting IoT nodes in Oppnets, IoT Node Selection System 1

(INSS1) with four input parameters: Node’s Distance to Task, Node’s Remaining En-

ergy, Node’s Buffer Occupancy, Node Inter Contact Time and Node Selection Decision

as an output parameter. We implemented a testbed for further evaluation and compared

the results obtained by both the simulation system and the tesbed and evaluate if they are

comparable.

This thesis contributes in the research field as following:

1. Proposal of new parameters for IoT device selection in OppNets.

2. Proposal and implementation of intelligent systems based on FL for appropriate

selection of IoT devices in OppNet.

3. Performance evaluation of implemented systems for different parameters and sce-

narios.

4. Comparison of implemented intelligent simulated systems.

5. Implementation of a testbed for OppNet and its application in a real scenario.

6. Give insights about future developments and application of OppNets and IoT as

important technologies for wireless communications.

3



1. Introduction

Figure 1.1: Thesis structure.
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1. Introduction

1.3 Thesis Outline

This thesis consists of 9 chapters and its structure is given in Fig.1.1.

The thesis is organized as follows.

Chapter 1 presents the background, motivation and thesis structure.

Chapter 2 introduces general aspects of wireless networks and describes Next Gener-

ation Wireless Networks (NGWN).

In Chapter 3, we introduce Internet of Things (IoT), Opportunistic Networks (Opp-

Nets) and its architecture.

In Chapter 4, we present Intelligent Algorithms (IA).

In Chapter 5, we present FL, Fuzzy sets and Fuzzy membership functions.

In Chapter 6, we present our proposed fuzzy-based simulation systems for IoT device

selection in OppNets.

In Chapter 7, are shown the performance evaluation results of proposed simulation

systems.

In Chapter 8, we show testbed implementation and evaluation.

In Chapter 9, we conclude this thesis and give the conclusions and future work.

5



Chapter 2

Next Generation Wireless Networks

2.1 Introduction

Technology companies and mobile carriers are working on overcoming the obstacles of

existing wireless networks by adopting new wireless technologies that aim to define new

global standards, handle the surge in data traffic and offer more spectrum bandwidth.

Wireless IP-based Networks have evolved to overcome limitations and to support the

rapidly increasing data. This rapid increase of the mobile nodes and the huge amount

of data generated has created challenges for the wireless networks. The providers of ser-

vices are facing bandwidth shortage hence the need for new technologies arises. The Next

Generation Mobile Networks (NGMN) aim to offer ubiquitous connectivity in remote and

challenging areas, lower latency and enable higher mobile speed. NGWN are bringing the

vast array of Internet services and providing users with a successful platform for future

mobile services. One of the most prominent next generation technologies is Fifth Gener-

ation (5G) networks. As the next iteration of 4G Long term Evolution (LTE), 5G will be

able to support and scale the massiveness of IoT devices. The next generation 5G wire-

less communications will provide very high data rates, bring connection to remote and

isolated areas, increase quality of service (QoS) and offer very low latency. To be able to

accommodate the increasing demand for data that comes with the addition of new users,

5G technologies were developed [1].

6



2. Next Generation Wireless Networks

2.2 Architecture of 5G

The 5G systems will support a wide range of services and applications by meeting the

requirements of the fully connected and highly mobile societies. The spread of con-

nected devices will pave the way to many services and will aid the communication needs

of machine-to-human and machine-to-machine applications. The coexistence of multi-

ple applications will impose many challenges that 5G has to overcome. To satisfy the

demands, the concept of slicing has emerged as an efficient way for serving all the re-

quired services on a common infrastructure. Slicing has been conceptualized as a way

of optimizing, simplifying and sharing the infrastructure between operators. With net-

work slicing, new capabilities are brought to 5G infrastructures which bring flexibility in

deployment and efficient resource utilization. With the many new services provided by

5G, in addition to enhanced Mobile Broadband (eMBB), two new mobile services: ultra-

reliable and Low-latency Communications (uRLLC) and massive Machine Type Commu-

nications (mMTC) have to meet requirements. eMBB provides support for services with

high bandwidth requirements such as Augmented Reality (AR), High Definition (HD),

Virtual Reality (VR). uRLLC aims to support latency sensitive services such as remote

management and assisted automated driving. mMTC will be able to support the massive

amount of IoT devices expected to become part of the network and focuses on services

that have high requirements for connection density requirements such as smart cities. In

Fig.2.1 is shown the architecture of a 5G network for easy deployment of IoT devices

since one of the key features of 5G is the support of the IoT applications.

As an extension of 4G broadband service, 5G allows an efficient scheduling of wire-

less resources to devices so no two devices access the same resource simultaneously. The

key to 5G, is providing diversified services with the end-to-end network slicing and meet

these services demands with Software-Defined Networking (SDN) and Network Func-

tions Virtualization (NFV), which support the physical infrastructure and brings cloud

closer to core network, transport and access.

2.2.1 Cloud RAN

The Radio Access Network (RAN) has always evolved with the coming generations of

mobile communications. In a RAN, radio sites coordinate the management of resources

and provide radio access. When a device is connected wirelessly to the core network, its

signal will travel within the network traffic and be transited by RAN to different wireless

7



2. Next Generation Wireless Networks

Figure 2.1: 5G Services Architecture Layer (Figure from 5G Network Architecture, A

High-Level Perspective, Huawei Technologies.)

endpoints. The real time functions of RAN are power control, access network scheduling,

retransmission, coding, interference coordination and link adaptation. All these functions

require a high computer load and performance in real time. The non-real time functions

of RAN include, cell selection, re-selection, inter-cell handover and multiple connection

convergence. For the deployment of sites, dedicated hardware with high accelerator pro-

cessing specifications and performance in close proximity to services, must be included.

These functions require minimal real-time performance, latency requirements to dozens

of milliseconds and are suitable for centralized deployment.

Multi-connectivity is gaining a reputation as an underlying fundamental construct for

the deployment of the future network architecture. A huge leap in radio network deploy-

ment is that CRAN can be seamlessly deployed in a unified network architecture.

In current fragmented networks, increasing speed and reducing latency can improve

user experience. Reliable high-speed data cannot depend on a single frequency band or

standard connections. In heterogeneous networks, multi-connectivity helps provide an

optimal user experience based on LTE and 5G capabilities, such as high bandwidth and

rates of high frequency, network coverage and reliable mobility of low frequency, and

accessible Wi-Fi resources.

In scenarios that require high bandwidth or continuity, a user requires multiple con-

current connections. To have high bandwidth, data aggregation of data from different

8



2. Next Generation Wireless Networks

multiple subscriptions like: LTE, Wi-Fi, 5G is required. After a user has accessed a 5G

high-frequency small cell, a LTE network access is required to maintain continuity.

In scenarios that source multiple technologies, Cloud RAN serves as an anchor for

data connection which noticeably reduces alternative transmission. In the traditional ar-

chitecture integrating base stations as an anchor for data connection, LTE, 5G, and Wi-Fi

data are aggregated into a non-real time processing module of a specific standard to be

forwarded to each access point. In the Cloud RAN architecture, non-real time processing

function modules in access points of different modes are integrated into the Mobile Cloud

Engine (MCE), which serves as an anchor for data connection. Data flows are transmitted

to each access point over the MCE, which prevents alternative transmission and reduces

transmission cost by 15%, and latency by 10 ms.

2.2.2 5G Challenges

Even though 4G has not been around long, the widespread use of devices, capacity of data,

and the emergence of IoT, demand a network that can handle the diversified needs. The

principal goal of 5G is to overcome the limitations of 4G and satisfy the needs of services

and applications that are always evolving. Before deploying a large scale network that

will fulfill demands, several challenges must be met.

Massiveness of IoT: It is predicted that IoT will create a massive increase in the num-

ber of connections and devices across the network. The number of connected devices has

already exceeded the population and many more are added to the network. Even though

the amount of data generated by simple devices is relatively small, they still require in-

frastructure for managing the data and the physical connections. Previous wireless mobile

networks limited the number of connected users on specific nodes with control mecha-

nisms. But old access control mechanisms cannot handle the growth of IoT devices, so

new scheduling and control mechanisms are required.

Big Data: One of the main reasons that caused the early development of 5G was the

large volume of data. The amount of data generated and passing through mobile networks

is increasing at about 25 to 50 percent a year, and it will continue to grow. This grow is

not only because of the new applications that require high data rates, but also because of

high screen resolution in 3D videos. Unlike 3G, 4G and 5G are all IP networks so the

challenge of data capacity in an end to end network increases. Furthermore, this is not

only for the air interface, but also for the access/ core network.
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Capacity and Cost Ratio: Users are generating more and more data, but are unwilling

to pay more. Therefore, increasing the network capacity without increasing the cost is

very challenging. One way is to separate the user data from the distribution of control, to

meet the data requirements. This can be achieved by using macro cells to provide control

plane signaling to wide areas and small cells within the macro cell for user plane data

without added complexity. By using existing sites and spectrum to increase capacity no

significant extra cost is added.

Fast Deployment of 5G Architecture: Speed of deployment of 3G and 4G was re-

stricted by the speed at which suitable backhaul network capacity could be provided to

each new site, and the capacity/flexibility of the backhaul. 5G will be challenged to fur-

ther develop CRAN as another evolution in network design, complementing the user and

control plane separation in the move towards more flexible cloud based networks. In this

concept, some functions of the RAN are moved from the cell site back into a consolidated

baseband cloud service. This provides a solution to support scaling and economy, lead-

ing to deployment flexibility and easier reconfiguration, because the core signaling and

intelligence is held within the cloud and the only localized physical elements are the RF

transceivers to provide RF connection to users.

Uninterrupted Services for Emergency Situations Many services such as emergency

services and medical monitoring require a high level of reliability and real time data.

For example one area where wireless networks are being used is to provide a remote

patient monitoring, care and access to its medical data so trained staff can provide remote

support. Also, other emergency services such as police and ambulance services, need a

always available high reliability link with call dropping or busy network issues. These

dedicated services are offered by dedicated networks, but these networks do not have the

resources for high bandwidth, high data capacity and reasonable coverage. Some of 5G

requirements are for real time interaction and high data rates, as well as a fast service

respond time. So 5G is supposed to offer "ultra reliable" services where the ability to

connect and operate is independent on infrastructure. This is based on using device to

device direct communication, ad-hoc backhaul, networking, and flexible re-configuration

of networks.

Augmented Reality (AR): AR are being vastly deployed on personal and portable de-

vices, increasing the demands for network capacity and performance. One key aspect is

that to enable interactions between the real and virtual world, latency must be very small

since human brain is very sensitive to time delays. Thus when processing visual data,
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VR services cannot be delivered unless the latency and delay are very small. The round

trip between devices and servers must be extremely low and the communication link must

be optimized. New signal/routing architectures will also be required as the overall la-

tency required cannot be achieved using traditional centralized server architectures. So it

is expected that critical low latency services will need infrastructure and architecture to

locate the service/server close to the user, to ensure latency between user and service is

minimized.

Machine-to-Machine: M2M have an important role in the overall IoT where one sec-

tor where this is being pushed forward is the automotive sector. There have already been

developed and deployed automotive wireless connectivity applications, where the vehi-

cles are used as a hub and cellular networks as the back-haul. Due to available battery

power, vehicles are used as a base station or as a relay node within the network. Intelligent

transport systems are creating demand for vehicle-to-vehicle and vehicle-to-infrastructure

communications, as well as linking the vehicle to other devices. And an ultimate goal that

now looks within reach is fully autonomous driving, but this will require secure and re-

liable communications for a widespread public deployment (beyond current trials and

deployment scenarios that still use driver intervention as a back-up mode). 5G networks

should be able to support this, if the network can deliver the capacity/coverage/ latency

combination required by use of heterogeneous network technologies. The challenge is

to go from concept to network architecture to technology, and meet these requirements

with flexibility, but also satisfy the high reliability/availability demands of autonomous

driving.

Device-to-Device: Device-to-Device communications have not been fully supported

in previous cellular networks. In cellular networks the data goes from device to base

station before going back to device, so direct links are not available. Such direct com-

munications have some drawbacks as they have narrow spectrum bandwidth and limited

capacity for transmitting data. In previous cellular networks, the technology of push-to-

talk was implemented to deliver a similar experience, however, sufficient coverage for

critical applications could not be guaranteed. In 5G networks the challenge is to support

these types of communications and allow direct communication between devices.
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Figure 2.2: A cloud based SD-WAN.

2.3 Software Defined Networking

Traditional network architecture is failing to meet with the requirements imposed by the

huge amount of data generated from big enterprises. On account of this, Software De-

fined Networking (SDN) was developed to transform the existing networking architecture

into a new one which supports all this change. In a SDN architecture, the network infras-

tructure is separated from data, control and application plane. This independency enables

enterprises to have more control and build highly flexible and scalable networks.

• Hierarchical architecture:
Conventional networks are hierarchical which served the client-server model, but

such architectures do not adapt to the virtualization of servers, cloud services and

the big data requirements of enterprises. Users are changing the traffic patterns by

accessing different applications, databases, servers with any type of devices from

anywhere, anytime.

• Diversity of devices:
Devices are increasingly more diverse and in need of a consistent connection to the

network. This puts the enterprises under pressure to accommodate all these devices

in a seamless manner.

Securely accessing corporate resources requires mobile users to connect to a branch

or HQ firewall VPN which could be very far from their location. This causes user expe-

rience issues, and encourages compliance violations (for example, direct access to Cloud
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services that bypasses corporate security policy). Ultimately, the mobile workforce is not

effectively covered by the WAN. The Cloud-based, secure SD-WAN shown in Fig.2.2 is

aiming to address these challenges.

2.4 Software Defined Wide Area Network

With the new digital innovations, businesses are eager to adopt new technologies to re-

duce cost and increase productivity. Traditional Wide Area Network (WAN) connects

users to applications hosted in data centers. However, traditional WAN depend heavily

on infrastructure which causes high latencies and single point failure. Furthermore, ap-

plications are moving from data centers into cloud and users progressively more mobile

are using more and more devices.

Software-Defined Wide Area Network (SD-WAN) have evolved as a solution for these

issues as it extends the benefits of cloud to applications from every location of the net-

work. Basically with SD-WAN you get the most out of your network resources and exist-

ing infrastructure.

SD-WAN, handles traffic based on priority, quality of service and other business re-

quirements by using software to intelligently steer the traffic across the WAN. Further-

more, SD-WAN enhances security by eliminating the dependency on other devices as

security solutions are built into the EDGE routers which ensures user’s traffic protection.

Other key benefits are the increase of applications performance, reduces network com-

plexity and cost, increasing bandwidth. They also simplify network management tasks

and provide a programmable flexible interface for controlling the network.

2.5 MANET Characteristics

Mobile Ad-hoc NETworks (MANETs) are new paradigm of networks, offering unre-

stricted mobility without any underlying infrastructure. Basically, MANETs are a collec-

tion of nodes communicating with each other by forming a multi-hop network. In Fig.2.3

is shown the architecture of MANETs. In the following we show the characteristics of a

MANET:

Dynamic Topologies: Nodes are free to move arbitrarily. The network topology may

change randomly and have no restriction on their distance from other nodes. As a result

of this random movement, the whole topology is changing in an unpredictable manner,
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Figure 2.3: MANETs architecture.

which in turn gives rise to both directional as well as unidirectional links between the

nodes.

Energy Constrained Operation: Almost all the nodes in an Ad-hoc network rely on

batteries or other exhaustive means for their energy. The battery reduces due to extra work

performed by the node in order to increase the lifetime of the network. Therefore, energy

conservation is an important design optimization criterion.

Bandwidth Constraint: The capacity of wireless networks is significantly lower than

the capacity of infrastructure based networks. Due to the effect of noise, interference,

fading and multiple access, throughput of a wireless network is much lower. This results

in an obstacle for bandwidth utilization.

Limited Physical Security: MANETs are distributed systems very vulnerable to phys-

ical security where physical threats are always present. As a result, there is an increased

possibility of denial-of-service type attacks, intrusions, spoofing and masquerading.

2.5.1 MANET Challenges

The area of applications for MANETs varies, ranging from small static networks with

constrained power sources, to highly dynamic large scale networks. Despite the appli-

cation, MANET need distributed algorithms to determine routing, link scheduling and

network organization. Due to their dynamic topologies, protocol design and delivery of
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messages in a decentralized environment is a complex task. In a static network, the short-

est path from source to destination is calculated based on a cost function, but this idea

is not extended in MANET due to variable wireless link quality, multiuser interference,

power constraints, fading, and changes in topology. However, in some application such

as military applications, latency, recovery from failure are significant concerns. Some

challenges must still be solved since they make these networks very vulnerable.

Routing: Routing packets between two nodes with a network topology always chang-

ing, is a challenging task. Reactive routing protocols are better suited for these cases

rather than proactive protocols. Due to the random movement of nodes in the network,

multicast tree is not static, so multicast routing is always challenging. Also path from

sender to receiver may contain multiple hops, which is more complex than single hop [2].

Security and Reliability: Like most of the wireless networks which have common

security vulnerabilities, Ad-hoc networks have their particular security issues such as,

malicious neighbors relaying packets. So, different authentication and key management

schemes are required. Furthermore, because of the limited transmission range, mobility-

induced packet losses and data transmission errors, wireless links may become unreliable.

Quality of Service (QoS): In a constantly changing network, there exist different levels

of QoS. The inherent stochastic feature of communications quality in a MANET makes it

difficult to offer guaranteed services to a device, so an adaptive QoS to support multimedia

services over the traditional networks must be implemented.

Inter-networking: In addition to the communication within an Ad-hoc network, inter-

networking between MANETs and fixed networks (mainly IP based) is often expected in

many cases. The coexistence of routing protocols in such environments, poses a challenge

for mobility management [3].

Power Consumption and Conservation: For most of the light-weight mobile terminals,

the communication related functions should be optimized for lean power consumption.

Conservation of power and power-aware routing must be taken into consideration.
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Chapter 3

IoT and Opportunistic Networks

3.1 Internet of Things (IoT)

Existing networks have already brought connectivity to a broad range of devices, such

as mobiles, laptops, tablets, PC, etc. The Internet of Things (IoT) will extend the con-

nectivity to devices beyond just mobile phones and laptops, but to buildings, wearables,

cars, different things and objects. Considered as the next evolution of the Internet, IoT

will enable devices to collect, analyze and exchange data. IoT is an intelligent network

of enhanced and smart devices equipped with an IP address, which communicate with

each other without the need of human interaction [4]. Multiple services will be enabled

by connecting humans with devices and processes. A wide heterogeneous well connected

network will benefit billions of people, economies, industries and potentially improve

societies [5].

As shown in Fig.3.1, IoT architecture is made of Edge, Fog and Cloud layers which

complement each other. Many enterprises are now mitigating toward a edge/fog/cloud

infrastructure to increase the utilization of the end devices. IoT Edge layer is comprised

of all smart IoT devices, sensors and embedded systems with varying operating systems,

batteries, CPU Types, buffer sizes, which process the data directly or forward it to a node

layer. The concept "fog computing" was introduced by Cisco company as an extension

of the network’s outer perimeter in which data generated from the IoT devices is prepro-

cessed by mini data centered servers before getting uploaded to the cloud. Large scale

IoT architectures have problems with latency, where edge devices have not the necessary

resources to process all the data from end devices and sensors. Every device with a net-

work connectivity, computing capabilities and storage can be a fog node. It is estimated
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Figure 3.1: IoT Architecture Layers [7].

that the amount of the data generated that needs to be analyzed on devices is enormous.

IoT solutions aim to minimize latency so analyzing data to where it is collected, helps by

offloading huge amount of data from the network traffic [6].

This layer acts as an intermediary between IoT devices and the cloud. Fog nodes

decide whether to process the data locally, or send it to the cloud for further analysis and

processing.

The cloud platform, receives the aggregated data from multiple fog nodes and per-

forms detailed analysis for deeper insights benefiting businesses. The difference between

fog and cloud computing is how and when the data is processed. Cloud computing is made

of centralized data centers with powerful resources such as back-end servers. Therefore,

processes huge amount of data from multiple edge/fog nodes and performs high-order

computations such as predictive analysis.
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3.1.1 IoT Applications

With the current hype around IoT, more and more companies are getting involved in

investing on prominent technologies.

Smart Home: A smart or automated home is an living environment equipped with

smart objects which connect to the outside Internet via a gateway. Home automatization

allows the homes to be fully connected and be internally or externally controlled. Smart

homes started as simple systems for lighting and heating, but have evolved into smart

technologies which include a broad range of devices and appliances. In Fig.3.2 is shown

an estimation of the number of connected IoT devices. It is expected that the number of

IoT devices will reach 75 billion by 2025.

Smart City: Implementation of information and communication technologies for ur-

ban areas will improve the quality of life. Due to many opportunities people encounter in

urbanized areas, more and more people are living in these areas, with more than half esti-

mated to be living by 2050. This migration of people toward urban areas has accelerated

technological inventions to tackle with issues such as scarcity of resources, environmental

changes and globalization. The unprecedented volume of data gathered each day has a

tremendous cost but provides insights on how the demand patterns are changing. Smart

technologies give faster, low costing solutions, optimize systems and create a more livable

city. Smart cities have a wide area of applications such as security, health care, energy,

economic development etc.

Smart Cars: Modern vehicles are equipped with sensors, services, enhanced compu-

tation systems and features that allow them to collect information. A smart car may be a

self-driving car which senses its environment and performs actions with no human input,

or a smart environment which connects with other cars and collect data in real-time to

avoid traffic jams, pre-order parts that need replacing, avoid accidents and so on [8].

Wearables: Accessories are getting equipped with sensors and software which per-

form tasks same as mobile phones and laptops with added functionalities such as real

time health monitoring. In case of wearables, sensors are placed closest to skin and con-

tinuously register vital parameters and movement. Using Bluetooth Low Energy (BLE)

protocol they connect to other wearable devices such as smartphones, collect data and

upload the gathered data to cloud for storing and deep analysis.
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Figure 3.2: An estimation of the number of connected IoT devices (Data from

statista.com, Nov 27, 2016).

3.1.2 IoT Challenges

As IoT evolves to a bigger network there are many challenges to overcome. IoT is chang-

ing the nature of Internet and as with many new technologies it will bring a broad range

of benefits but also face many key challenges which are listed below:

Management Capabilities: As IoT networks evolves, it is becoming more and more

complex. The number of devices will exponentially increase which means the amount of

data to be generated and processed will also increase. IoT connected devices, range from

small sensors to powerful devices and gateways which connect to each other. These dif-

ferent devices need to pass through a process of authentication, configuring, provisioning

in order to manage the devices and have a high bandwidth and persistent connectivity.

Security: IoT platform offers a tremendous market for opportunities but it also poses

a security risk. IoT consists of different networks so some may be vulnerable to attacks

becoming a threat to devices in other networks. These compromised networks can be

used as gateways to unsecured networks, allowing sensitive data to be extracted. An IoT

device carries a vast amount of sensitive data which is personal to user, such as credit

cards details, health information, medical history. Different from mobile devices, lap-

tops, tablets where security has been considered during the design phase, for devices such
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as appliances and other objects security has not been a priority. Many IoT devices are

resource-constraint and cannot compute security procedures such as advanced encryption

or other measures.

Scalability: Scalability is a very big challenge since IoT devices need to have the

ability to adapt to changes in the environment and not be affected by future changes.

The addition or withdrawal of the devices should not affect the network. What makes

scalability a challenge is the different aspects that make up an IoT platform. Product

companies need to consider and take into account different aspects such as manufacturing

devices with more capacities for data, make them more durable by putting security first.

Standardization: The number of objects connected to the Internet exceeds the world’s

population and each of them generates a very large volume of data which needs to be

managed, processed and exchanged securely. Every company is aiming at an enterprise

level functioning IoT platform and are building their strategies to accommodate their busi-

ness interests. As a consequence many IoT device’s users are required to download soft-

wares and drivers to use existing technologies. Interoperability has been achieved through

multi-protocol gateways, but scalability in IoT will lower the cost of data transfer, device

manufacturing and reduce the gap between protocols.

3.2 Opportunistic Networks (OppNets)

Designed as a specialized ad hoc network suitable for applications such as emergency

responses, OppNets are considered a sub-class of Delay-Tolerant Network (DTN) where

communication opportunities (contacts) are intermittent, so an end-to-end path between

the source and the destination may never exist. The network starts as a seed network made

up of a small group of nodes and grows opportunistically during operation since nodes

can join or leave the network at any given time. The link performance in an OppNets

is highly variable. Therefore, TCP/IP protocol will break in this kind of environment

because an end-to-end path between the source and the destination may only exist for a

brief and unpredictable period of time.

Long propagation and variable queuing delays might be introduced and many Internet

protocols which are designed to assume quick return of acknowledgements and data, can

fail to work in such networks. One possible solution to resolve the above issues is to

exploit node mobility and local forwarding in order to transfer data. Data can be stored

and carried by taking advantage of node mobility and then forwarded during opportunistic
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Figure 3.3: An example of OppNets.

contacts. Here entire chunks of message are transferred from one storage unit to a storage

uit in another node along a path that is expected to reach the destination [9].

3.2.1 Architecture of OppNets

OppNets consist of nodes which can be anything from fixed devices, vehicles, pedestrians

and so on. The data is sent from the source to destination using communication links cre-

ated by opportunistic contacts that can be Wi-Fi, cellular technologies, Bluetooth or satel-

lite links. These nodes can be IoT devices which roam and opportunistically encounter

other IoT devices with which they perform data collection, exchanging or dissemination,

as well as relay data between these networks enabling connectivity for other disconnected

networks. In Fig.3.3 is shown an example of data forwarding in OppNets. In this exam-

ple sender A, wants to send a message to receiver B. The message will go through many

steps before reaching destination. Sender A in a car driving on the streets, will send the
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message to a cycler passing by in that area. The cycler passing through traffic, will use

Bluetooth to forward the message to the bus passing nearby, which will forward it to the

pedestrian. The latter will forward the message to the tram whenever there is a contact

opportunity, which means a node has come in its range of communication. Now the mes-

sage is carried by the other node and the same process is repeated until the destination

has been reached. There can be one or many links between sender A and destination B

and, links may be disrupt and the topology of the network can change. It can also be

seen from the figure that at a given time, not all nodes have the same resources. Some

have more storage than others, whilst some have better battery levels. If a node becomes

a dead node due to its battery running low, it will store the message until it is activated

again introducing delay [10].

3.2.2 OppNet Protocols

OppNets different from traditional networks, have asymmetrical data rates, limited trans-

mission range and are characterized by intermittent connectivity. Therefore, network par-

titions happen all the time and to solve these problems OppNets uses Store-Carry-Forward

mechanism where messages are stored in the nodes’ buffer until forwarded to immediate

nodes to reach the destination. The topology of the network consistently changes with

links coming up and down due to node mobility. They have evolved from ad hoc net-

works but traditional ad hoc protocols do not work well as they require a fully connected

end-to-end path, so other routing protocols must be used. Routing consists of forward de-

cisions made based on predictions of future connectivities and node mobility information.

OppNets being a variant of DTN are challenged networks with different devices and

routing environments. Since the conventional TCP model is not applicable in these net-

works because of the absence of an end-to-end path, a "bundle layer" is introduced be-

tween the transport and the application layer. This new layer provides an end-to-end data

transfer for heterogeneous networks by allowing bundle protocols such as (Spray and

Wait, Epidemic, MaxProp, PRoPHET) to interface with different transport protocols. In

Fig.3.4 is shown the protocol architecture of DTN. As shown in Fig.3.3, the packets gener-

ated by the source node will go through different heterogeneous networks before reaching

the destination. The transfer of these packets called "bundles" is provided by the bundle

layer protocol through store-carry-forward mechanism. Different transport protocols can

be used in different network segments [11, 12].
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Figure 3.4: DTN Protocol Stack.

• Flooding based routing protocols: They spread the messages and their copies in

the network.

Epidemic Routing: Epidemic routing brings the concept of flooding in intermittent

connected networks. Each node maintains a list of the all the messages which are

waiting to be delivered. When it comes in contact with another node, they will

exchange all the messages they do not have in common, making all nodes aware

of the destination. Even though the maximum delivery probability is reached by

spreading messages all over the network which eventually reach the destinations,

it creates a lot of congestion and a large overhead. Furthermore, due to limited

resources nodes tend to have, the messages may be dropped and/or retransmitted.

Another drawback of epidemic routing is that nodes continue to propagate messages

even if they have been successfully delivered to destination.

Spray and Wait: The Spray and Wait protocol is an improvement of Epidemic Rout-

ing which limits the message forwarding by reducing the messages exchanged. The

routing process consists of two phases: spray phase and wait phase. During the

spray phase, one node will generate n copies of packets which will spread to the

first nodes it encounters. After the spray phase, it goes to the second phase which

is the wait phase where it waits for a confirmation that the message has been re-
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ceived by the destination. Once the data is delivered the destination will send an

acknowledgment using the same two phases.

• Forward based routing protocols: These types of protocols use a more efficient

mechanism to select relay nodes in order to increase the delivery probability, but

lowering the overhead and limiting the resource usage.

PRoPHET (Probabilistic Routing Protocol using history of Encounters and Tran-

sitivity): The PRoPHET protocol uses node’s mobility pattern to predict the pos-

sibility that certain node will visit the location again, based on past history. In

PRoPHET, a message is relayed to a contact node only if the delivery probability

to destination node of the contact node, is higher than that of the transmitting node.

By doing so, delivery probability is increased. However, since a node has to buffer

the message until the destination delivery probability is met, much longer delays

will be introduced and nodes may have insufficient buffer sizes.

MaxProp: MaxProp protocol increases the delivery rate by using mechanisms that

prevent retransmission and deletion of duplicate packets. When one node comes

in contact with another one, it will not forward all the messages, but only the one

the contact does not have. Each node will keep a list of all the stored packets

ranked based on the cost which indicates the possibility of reaching the destination.

MaxProp will assign priority values to packets and prevent storing the same packet

twice. When a packet reaches the destination, an acknowledgement message will

inform the other nodes to drop the delivered packets they are still holding.

3.2.3 OppNets Challenges

In this subsection we present the challenges in the use and development of OppNets:

Storage limitations: Nodes must have enough storage to store all messages for an

unspecified period of time until there is a contact opportunity to transfer the messages.

To deal with the storage limitations, buffer management and replication strategies must

be considered. In OppNets, individual devices have variable capacities and the amount

of traffic generated is not predictable. Therefore, devices with limited storage capabilities

can severely affect QoS as transmission uses store-carry-forward mechanism.

Contact Opportunity: OppNets are networks which are formed when nodes come in

contact with each other through physical proximity and share their services and resources

by different communication media. However, due to node mobility and the dynamic
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wireless channels, a node can make contacts with other nodes at an unprecedented time.

Since contacts between nodes are unpredictable, with every contact opportunity nodes try

to relay messages so they reach destination.

Cooperation Level: It may be required that some nodes provide their own resources

(buffer, battery, bandwidth) for other nodes to use without getting compensation. Differ-

ently from other traditional wireless networks, nodes are required to store the message in

its own buffer for the other nodes, waisting both memory and battery resources. Some

nodes don’t cooperate with other nodes and don’t participate in the routing process. De-

pending on the level of cooperation, nodes are categorized based on the reputation. Some

nodes show selfish behaviors and stop forwarding data reducing packet delivery ratio or

the messages might not get delivered at all.

Intermittent Connectivity: In a network of nodes with high mobility, frequent and

lengthy disruptions mean that a path from source to destination hardly exists. The incon-

sistent connectivities between nodes due to mobility, is called intermittent connectivity.

In such scenarios, links between two nodes are unpredictable and intermittent.

Energy: One of the main challenges of OppNets is energy consumption. Having a

dynamic and time varying network topology, messages need to be replicated and relayed

to nodes in their range. Continuously having to detect the environment for discovering

nodes causes an energy consumption. What makes it even more challenging is that since

OppNets are mostly deployed in challenging areas, there are restrictions with the battery

recharging and replacing. Energy is essential in maximizing the network lifetime.

Security and Privacy: Always changing topology of the network presents many se-

curity and privacy issues with OppNets. Therefore is important to ensure node authenti-

cation, privacy protection, data integrity and confidentiality [13].

3.2.4 OppNets Applications

Different from traditional networks where nodes are all deployed together at the same

time, in OppNets nodes constantly become part of the network continuously.

Emergency Scenarios: The network starts as a seed network which consists of nodes

deployed in the initial phase of the network. If an event that needs an emergency response

happens, the seed network will expand by adding helpers to the seed network. A seed

network grows, when a node discovers potential helpers by a lookup in the directory or

by scanning the spectrum for helpers. These helpers are invited or forced to join the
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network, based on the emergency of the situation. A helper node is required to assist and

must offer its resources if it is within range of a sensitive event [14]. After an event is

detected and the seed network is formed, new potential helpers are admitted and added to

the network, such as ambulance, firefighter, police car, infrastructure sensors nearby.

Inter-Planetary Networks (IPNs): Another application of OppNets is establishment

of a communication between Earth and satellites or other planets. In these environments

the communication exhibits frequent disconnections so OppNets can be applied.

Opportunistic Vehicular Networking: The high mobility of vehicles causes short

contacts between vehicles limiting the data transmitted making them a version of Opp-

Nets. Vehicles collect data from their own sensors, sensors installed in the city and dis-

tribute data to other vehicles
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Chapter 4

Intelligent Algorithms

4.1 Introduction

With the huge amount of data generated, collected, processed and stored, Intelligent Al-

gorithms (IA) have become prominent in order to retrieve, manipulate and interpret this

data. IA, are designed to make decisions based on a variety of data, act on these data and

make decisions, since classical logic is very limited in modeling all human reasoning.

So far, probability has been the only uncertainty with which mathematics has worked,

but recently the uniqueness of probability theory as a model for capturing uncertainty and

vagueness has been questioned. The uncertainty of probability generally relates to the

occurrence of phenomena, as symbolized by the concept of randomness. Randomness

and fuzziness differ in nature from probability being different aspects of uncertainty. The

uncertainty lies in the meaning of the words, and since it is an essential characteristic of

the words, it always follows them around to some extend.

Many attempts have been made, especially in this century, for augmenting the rep-

resentational capabilities of logic, or for proposing non-additive models of uncertainty.

One of the most radical and fruitful of these attempts was initiated by Prof. Lotfi Zadeh

in 1965 with publication of his paper ”Fuzzy Sets” [15, 16, 17]. Fuzzy set theory has

become accepted in the literature as a tool for dealing with certain forms of imprecision

that frequently occur in decision making environments, but for which probability calculus

is inadequate. Fuzzy theory use linguistic variables to describe the control parameters.

By using relatively simple linguistic expressions is possible to describe and grasp very

complex problems. A very important property of the linguistic variables is the capability

of describing imprecise parameters.
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Figure 4.1: Genetic Algorithm Flowchart.

This chapter is about IA and the most commonly used IA. We will first introduce GA

and its main concepts. Next we will give the basics of TS, SA, PSO.

4.2 Genetic Algorithm

The Genetic Algorithms (GAs) are a meta-heuristic paradigm that can be implemented

and applied in various problems including unconstrained and constrained optimization

problems, nonlinear and stochastic programming and also node placement methods. GAs
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are a growing area of artificial intelligence and are inspired by Darwin’s theory of bi-

ological evolution. Based on these evolutions, GAs can solve optimization problems.

The heuristic search of GAs is based on Holland’s scheme theorem. Genetic Algorithms,

simulated annealing and evolutionary strategies are mainly used for probabilistic search

mechanism directed toward decreasing cost or increasing payoff. GAs generate a se-

quence of populations by using a selection method and use crossover and mutation as

search methods. One main difference between GAs and evolutionary strategies is that

GAs uses crossover as a probabilistic mechanism and of useful data exchange to locate

better solutions.

1. Selection: As selection operator, we use roulette-wheel selection [18, 19, 20]. In

roulette-wheel selection, each individual in the population is assigned a roulette

wheel slot sized in proportion to its fitness. That is, in the biased roulette wheel,

good solutions have a larger slot size than the less fit solutions. The roulette wheel

can obtain a reproduction candidate.

2. Crossover: The crossover operators are the most important ingredient of GAs. In-

deed, by selecting individuals from the parental generation and interchanging their

genes, new individuals (descendants) are obtained. The aim is to obtain descendants

of better quality that will feed the next generation and enable the search to explore

new regions of solution space not explored yet [21]. There exist many types of

crossover operators explored in the evolutionary computing literature. Two of the

most common types of crossover are shown in Fig. 4.2. It is very important to stress

that crossover operators depend on the chromosome representation.

3. Mutation: Mutation operator is one of the GA ingredients. Unlike crossover op-

erators, which achieve to transmit genetic information from parents to off-springs,

mutation operators usually make some small local perturbation of the individuals,

having thus less impact on newly generated individuals (see Fig. 4.3). Crossover is

"a must" operator in GA and is usually applied with high probability, while muta-

tion operators when implemented are applied with small probability. The rationale

is that a large mutation rate would make the GA search to resemble a random search.

Due to this, mutation operator is usually considered as a secondary operator.

GA is one of the most powerful heuristics for solving optimization problems that

is based on natural selection. The GA repeatedly modifies a population of individual

29



4. Intelligent Algorithms

(a) Single Point Crossover.

(b) Multi-point Crossover

Figure 4.2: Two of the most common types of crossovers.

Figure 4.3: Chromosome before and after mutation.

solutions as shown in Fig. 4.1. At each step, the genetic algorithm selects individuals at

random from the current population to be parents and uses them to produce the children

for the next generation. Over successive generations, the population "evolves" towards an

optimal solution [22]. In Alg. 1 is shown the pseudo-code for a GA.

In our previous work, we have used GA for placement problems [23]. In IoT networks,

when devices/nodes are deployed densely, there is a possibility that a node may reside in

the coverage area of multiple different nodes. The goal is to find an optimal and robust

topology for the network nodes that brings connectivity services to events.

4.3 Tabu Search (TS)

Tabu Search (TS) is a meta-heuristic method that provides optimal or very close optimal

solutions to many combinatorial problems. Heuristic techniques have been used for NP-

hard problems where it is very difficult to find an exact solution. The search methodology
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Algorithm 1 Genetic Algorithm Pseudocode
t← 0;

Initialize population P(0)

Assign a fitness function to each population member P(0)o f size Θ
while max_nr_of_generations_reached do

Select the parent pool Pp(t) o f size Φ;

Crossover pairs from parents pool Pp(t)with probability pc; Pc(t) =

Crossover(Pp(t));

Mutate individuals in Pc(t) with probability pm; Pm(t) = Mutate(Pc(t));

Create new population with individuals from crossover and mutation;

P(t +1) = Individuals(Pc(t)
∪

Pm(t));

t← t +1

end while

of TS is similar to neighborhood search. It starts from one point (solution) to another point

until a termination criterion is satisfied. Search space of TS is the space of all the solu-

tions that are considered during the search. Search space together with the neighborhood

structure are the two basic elements of TS.

Each point starts as an initial solution in a search space, which by applying a series of

local modifications called moves, improves to a solution which differs moderately from

the previous one. The quality of solutions and computational time, depends on the com-

plexity of the moves at each iteration. Whenever a local optimum has been reached, Local

Search (LS) technique is applied which does not allow non-improving moves. This way

going back to previously visited solutions is not allowed by the use of memories which

are called tabu.

The final solution is called local optimum since it is better than the other solutions in

the neighborhood but in most cases it will not be a global optimum [24]. While tabus are

important as they prohibit moves that go back to non-improving solutions, they may also

negatively affect the searching process.

When the tabu of a certain move is 0, than the move can be accepted again. In Fig. 4.4

it can be seen that the algorithm can not go back to the local optimum so it has to search

other regions in the search space. Tabu moves are saved in a tabu list, where for each

iteration each tabu is decremented by one. There are cases where tabu moves are allowed.

For example, when a tabu move allows a new global solution.

31



4. Intelligent Algorithms

Figure 4.4: Illustration of a tabu move.

4.4 Simulated Annealing (SA)

Simulated Annealing (SA) is a probabilistic method that finds the global minimum of a

function that may have several local minimum. It takes the name from the physical pro-

cess where an object is heated to a temperature where atoms rearranged and than cooled

down slowly until the object freezes into a regular structure. SA, uses the idea of anneal-

ing to find low cost solutions to combinatorial optimization problems. Many problems,

as they become larger require many steps to reach a potential solution. Heuristic methods

for optimization problems are important as they offer a solution in reasonable time, but

they do not always guarantee the optimum one.

The current literature indicates that the use of simulated annealing algorithms broad-

ens the solution space and results in a higher probability, though not guaranteed, of deter-

mination a global optimum rather than a local optimum. The traditional search methods

rely on an iterative descent approach that performs well if the objective function has a

convex continuous shaped function. In practice, SA algorithms yield a polynomial time

solution to an exponential time problem.

One feature of SA, is that it does not get trapped at local minimum. The algorithm

employs a random search, which not only accepts changes that decrease objective func-

tion, but also some changes that increase it. The latter are accepted with a probability.
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The implementation of the SA algorithm depends on this annealing process structure and

the process requires the following elements:

• a representation of possible solutions,

• a generator of random changes in solutions,

• a means of evaluating the problem functions.

Another significant component of an SA code is the random number generator, which

is used both for generating random changes in the control variables and for the tem-

perature dependent increase acceptance test [25]. SA algorithm always accepts a better

solution based on the objective, but it also reduces the likelihood of the solution being

trapped, by accepting a worse solution if an acceptance criterion value is greater than a

selected random number.

4.4.1 Local Versus Global Search

For many problems, to find a solution that satisfies all the constraints, a large number of

possible solutions must be searched. For example, consider the problem of composing

a classroom schedule with constraints such as time constraints of students and lecturers

and the availability of classrooms. Even for a problem with a relatively small number of

constraints, it may be necessary to search through many possible schedules to find the one

that satisfies all the constraints [26].

For certain cases, there have been found algorithms that solve large computational

problems without having to search through the space of all possible solutions. However,

sometimes such a large search cannot be avoided. The search space is referred as a com-

binatorial search where the best way to search it, depends on the problem to be solved.

Inability to detect the unsolvability of a problem instance, is one of the main drawbacks of

local search. When dealing with optimization problems it is difficult to determine whether

the solution found is globally optimal. In Fig. 4.5 is shown the graph for the local and

global minimum of SA method. In contrast with the local search methods, with the global

search techniques, we are able to tell if no solution exists after all the search space has

been explored and no solution is found.
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Figure 4.5: Local and global minimum for SA.

4.5 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is another heuristic optimization method based on

swarm intelligence. It was introduced in 1995 by Kennedy and Eberhart and it is very

popular due to its optimization performance. In PSO particles use their past experiences to

find the optimum solution based on the experience of the swarm. PSO algorithm simulates

the social behavior of birds in a flock which fly in synchrony with each other and regroup

if suddenly change direction.

When searching for food, if the birds are scattered, they have a smaller chance of

finding food than when together as a flock. When in a flock, one bird is always closer to

the food and transmits this information to the other birds. Birds, or particles fly through

out the search space with the aim of finding food or finding the optimum solution. To

explain it in analogy with evolutionary paradigms, particle represents an individual in

a population which is represented as a swarm. In Alg. 2 is shown the pseudo-code for

PSO. Changes of the particle’s position within this search space are influenced by the

information or experience of its neighbors. In a population P(0), each particle i has an
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Figure 4.6: PSO particle movement.

initial position denoted as xi(k) at a discrete time step k. If a velocity vi(k+1) is added to

a particle, its position will change to another position xi(k+1), i.e.

xi(k+1) = xi(k)+ vi(k+1) (4.1)

The position of each particle changes based on the best position this individual parti-

cle has during its movement and its best position related to swarm position as shown in

Fig. 4.6. In a population P(0) of particles i=1,.....,nâ, each particle will keep in its mem-

ory the best position of the search space for each iteration. The speed of the particles gets

updated at each iteration. In Eq. 4.2 is shown the velocity of the particle i, at time step k.

vi(k+1) = vi(k)+ c1r1(yi(k)− xi(k))+ c2r2(y j(k)− xi(k)) (4.2)

Where:

• xi(k) - particle’s position at time step k.

• vi(k) - particle’s velocity.

• vi(k+1) - updated particle’s velocity.

• c1,c2 - acceleration constants that represent cognitive and social components.

• r1,r2 - random numbers in the range [0, 1] for having a uniform distribution.

35



4. Intelligent Algorithms

• yi(k) - particle’s best individual position.

• y j(k) - particle’s best swarm position.

Velocity of the particle represents the experiential and social information exchanged

form particles’ neighbor.

Algorithm 2 PSO Pseudocode
k← 0;

Initialize: population P(0)

for each particle i=1,....n do
Initialize: particle’s initial position xi(0)

Calculate fitness function of each particle f (xi)

if f i(x)<= f i(y) compare current fitness value with the best fitness value then then
Set value f (yi) as the best

yi = xi global best position

end if
end for
for each particle i=1,....n do

Eq. 4.1← xi(k+1);

Eq. 4.2← vi(k+1);

end for
Until Check if termination criteria is reached.
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Chapter 5

Fuzzy Logic

5.1 Introduction

In this chapter we show how the fuzzy control systems can be used for real-world appli-

cations. These systems use heuristic logic and rules as opposed to conventional control

approaches such as Proportional Integral Derivative (PID) where differential equations

are used. Fuzzy Logic (FL) is the logic underlying modes of reasoning which are approx-

imate rather then exact. The importance of FL derives from the fact that most modes of

human reasoning and especially common sense reasoning are approximate in nature.

The essential characteristics of FL relate to the following.

• In FL, exact reasoning is viewed as a limiting case of approximate reasoning.

• In FL everything is a matter of degree.

• Any logic system can be fuzzified.

• In FL, knowledge is interpreted as a collection of elastic or, equivalently, fuzzy

constraints on a collection of variables.

• Inference is viewed as a process of propagation of elastic constrains.

In a broad sense, FL is almost synonymous with fuzzy set theory. Fuzzy set theory,

as its name suggests, is basically a theory of classes with unsharp boundaries. Fuzzy

set theory is much broader than FL and contains the latter as one of its branches [27,

28, 29]. Among the other branches of fuzzy set theory are e.g., fuzzy arithmetic, fuzzy

mathematical programming, fuzzy topology, fuzzy graph theory, and fuzzy data analysis.

37



5. Fuzzy Logic

What is important to recognize is that any crisp theory can be fuzzified by generalizing

the concept of a set within that theory to the concept of a fuzzy set.

5.2 Fuzzy Logic Controller

Modeling and simulating a complex real world system is a challenging task. Fuzzy

Control (FC) gives us a methodology for representing, manipulating and implementing

heuristic knowledge to control a system in order to satisfy the necessary assumptions. FC

consists of four components:

1. Fuzzification;

2. Inference Engine;

3. Rule-base;

4. Defuzzification;

Fuzzy logic can model nonlinear functions to a good degree of accuracy and map

input and output data of systems. FC can be viewed as an artificial decision making

system that operates by taking input data and then ensuring that the objectives are met.

In fact, any kind of control law can be modeled by the FC methodology, provided that

this law is expressible in terms of "if ... then ..." rules, just like in the case of expert

systems. However, FL diverges from the standard expert system approach by providing an

interpolation mechanism from several rules. In the contents of complex processes, it may

turn out to be more practical to get knowledge from an expert operator than to calculate

an optimal control, due to modeling costs or because a model is out of reach [30].

5.3 Fuzzification

Fuzzification is the process of conversing numerical input variables into fuzzy sets so they

can be used by the inference engine. In real world, different hardwares such as devices and

sensors, generate crisp data which are subject to a range of errors. Many of the quantities

that we consider crisp, carry some uncertainty and fuzzification is widely used to handle

imprecision of measurement. In a domain of numerical inputs xi ∈ Xi, each numerical

input xi transforms into a fuzzy set A f uzz
i which is defined on the universe of all possible
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fuzzy sets X f uzz
i . The fuzzification F process begins with choosing the most suitable

membership functions where each input variable has its own Membership Function (MF),

where:

F (xi) = A f uzz
i (5.1)

In other words, input MFs, associate each numerical element with a number in the

interval [0,1] as shown in Eq. 5.2.

µ xi :∈ Xi→ [0,1] (5.2)

There are two types of fuzzification methods: singelton and non-singleton fuzzifier.

Singleton is the most used fuzzifier type because it is simpler and has lower computational

requirements. Non-singleton fuzzifiers are used more successfully when noise is present

in data processed by the system. The MFs for singleton and non-singleton fuzzifiers are

defined in Eq. 5.3 and Eq. 5.4, respectively.

µ (x) =

1 if x = xi

0 else x ̸= xi

(5.3)

µ (x) =

1 if x = xi

other else x ̸= xi

(5.4)

In Fig.5.1 are shown the pictures of MFs for each fuzzification type. As seen from

the picture in the singleton fuzzification in Fig.5.1(a), µ (xi) takes only the measured

value, as there is no presence of noise, unlike the non-singleton fuzzification shown in

Fig.5.1(b) where for values different from xi, µ (x) takes into consideration the presence

of noise [31]. Singleton fuzzification is preferred since it is used in practical scenarios,

while non-singleton fuzzification adds complexity to the next process which is inference

engine [32]. However, the fuzzification used is based on the noise level present and the

type of the designed system.

5.3.1 Inputs and Outputs of FC

For any decision making system the main goal is to get the desired output for a given set of

inputs. Before designing a control system, first a set of inputs based on the problem must
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(a) Singleton Fuzzification (b) Non-Singleton Fuzzification

Figure 5.1: Fuzzification Types.

be identified. Deciding the information that will be used as the input in a decision making

process can be difficult since the output is a direct function of the input parameters.

One of the challenges for non linear control systems is sampling input parameters in

the big domain of all the possible inputs. For example, for a selection decision making

system, input variables vary from each other, but they all affect the result in different de-

grees. The relative importance of each variable is taken into consideration when designing

and implemented the system.

5.3.2 Linguistic Description of Parameters

In this section we have introduced the notion of linguistic description of variables. A

linguistic variable is expressed in the natural or artificial language and its purpose is to

approximate phenomena that are too complex to be expressed only as a crisp value. Each

variable is described in linguistic values with associated degrees of membership. One im-

portant step in the process of decision making is the aggregation of information expressed

in linguistic variable.

Every linguistic variable is aggregated in linguistic values or term sets. For a linguistic

variable to be a useful analysis tool, it must be manipulated through different operations.

One way of manipulating linguistic variables is by manipulating the MFs associated with

them [33]. There are many ways of describing a linguistic variable in different term sets

where each one represents one different level of quantity. However, the choice of linguis-

tic variable or term sets does not affect the FC as it is just a simple way of approximately

representing a parameter. Lets assume that we have a linguistic variable x̂i which is rep-
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(a) Crisp Set (b) Fuzzy Set

Figure 5.2: Crisp and Fuzzy Set.

resented as a term set Â j
i in the domain Xi where j = 1 , 2...m, and µA j

i
(xi) is the MF

associated with the fuzzy set A j
i which maps Xi to [0,1].

Lets assume we have one parameter to which we assign a linguistic variable x1 =

”age” and three linguistic values or term sets to this variable: Â1
1 = young, Â2

1 =middleage,

Â3
1 = old. A1

1, A2
1, A3

1 are fuzzy sets and their MF describes the degree of certainty that

the numeric value of age, has the properties characterized by A j
1. In this case we have

decided to use three term sets per linguistic variable, but different levels of aggregation

can be used depending on the problem.

5.4 Fuzzy Sets

Fuzzy sets theory is an extension of the classical theory of crisp logic which is based on

two truth values: true or false. However, using only two values is not sufficient for human

reasoning. FL uses the interval between 0 (false) and 1 (true) to give multiple values to

variables. Fuzzy sets concept is first introduced by defining a MF and they heuristically

quantify the linguistic variables, values and rules. Each member in a fuzzy set has differ-

ent degrees of membership in the interval [0,1]. In Fig.5.2 are shown examples of a crisp

set and fuzzy set. The input and output must be converted to linguistic variables whose

values are words in natural or artificial language, however the original input and output

must be crisp variables, but the intermediate process is a fuzzy inference process. Given

a linguistic variable x̂i and a MF µA j
i
(xi), a fuzzy set is defined as shown in Eq. 5.5.

A j
i = (xi, µA j

i
(xi)) : xi ∈ Xi (5.5)
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Figure 5.3: Crisp vs. Fuzzy Sets.

Previously, decision making systems were formulated based on the Boolean logic,

where crisp values of 0 and 1 were used. However, human brain is not wired to think in

"yes or no" logic, but it can be fuzzy, qualitative, uncertain in nature as shown in Fig.5.3.

In FL, uncertainty does not refer to the lack of knowledge about the value of a parameter,

rather than in the sens of vagueness. In the following are shown the essential notions of

the fuzzy set theory. A fuzzy set can contain all the possible outcome from the interval

[0,1].

• Xi domain of numerical input;

• xi i− th numerical input;

• x̂i linguistic variable for numerical input;

• A j
i fuzzy set;

• Â j
i j− th linguistic value for i− th linguistic variable;

• i, j n-tuple where n≥ 1 and m− tuple where m≥ 1 ;

• [0,1] MF interval;

• F fuzzification operator;

A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or

no membership at all, whereas fuzzy sets allow partial membership. In other words, an

element may partially belong to a set.
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Figure 5.4: Types of MF.

5.4.1 Membership Functions

A Membership Function (MF) is graph representation of the degree of participation of

each input value to a interval [0,1]. The MF is usually denoted as µA and for each value

xi quantifies the degree of belongingness of the element xi to the fuzzy set. With MF, we

show how FL is used to quantify the meaning of each linguistic description so that we

automate the control rules specified my the type of application. µA j
i
(xi)

In Fig.5.4 are shown the graphical representation on some of the most used types of

MF. Triangular and trapezoidal are most commonly used due to their computational effi-

ciency and their simplicity as they are formed with straight lines. The Gaussian MF unlike

the other MF, has smooth curves but is not suited for application that require unsymmetri-

cal MF. However, the types of MF are not limited only to the one showed in Fig.5.4, other

types of MF can be used depending on the applications.

Lets assume that we have one input variable xi which changes over time xi(t). We

use the function µ to quantify at what certainty does xi(t) classify as a specific term set.

Below we have shown a case analysis where we show how to interpret MF for different
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Figure 5.5: Membership Function for different linguistic values.

values of xi(t). In Fig.5.5 is shown a specific case where we have chosen speed V(t) as an

input variable.

• If V (t) = 50, µ(50) = 1 indicates that we are absolutely certain that V (t) = 50 is

absolutely "Slow".

• If V (t) = 70, µ(70) = 0.5 indicates that we are only halfway certain that V (t) = 70

"Medium". In terms of linguistic interpretation, this value is considered "gray area"

The types of MF used in Fig.5.5 are trapezoidal and triangular, but can be bell shaped

or others. Also, very often all the MF for the input or output will be drawn in one graph

with labels describing the meaning of their associated linguistic values. In this way we

can easily specify the MF for all linguistic values.

5.4.2 FC Rules

FC describes the algorithm for process control, as a fuzzy relation between information

about the conditions of the process to be controlled, x and y, and the output for the pro-

cess z. The relationship between input and output is summarized in a form of rules in the

control knowledge base or rule base. There are two main tasks in designing the control

knowledge base. First, a set of linguistic variables must be selected which describe the

values of the main control parameters of the process. Both the input and output param-

eters must be linguistically defined in this stage using proper term sets. The selection of

the level of granularity of a term set for an input variable or an output variable plays an

important role in the smoothness of control. Second, a control knowledge base must be

developed which uses the above linguistic description of the input and output parameters.
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The control algorithm is given in "if-then" expression, such as:

If x is small and y is big, then z is medium;

If x is big and y is medium, then z is big.

These rules are called FC rules. The "if" clause of the rules is called the antecedent

and the "then" clause is called consequent. In general, variables x and y are called the

input and z the output. "Small" and "big" are linguistic values for x and y, and they are

expressed by fuzzy sets.

The rule base of a complex systems has different types of input to output ratio such

as:

• Single Input Single Output (SISO)

• Multiple Input Single Output (MISO)

• Multiple Input Multiple Output (MIMO)

More than one FC rule can be fired at one time, because of the partial matching at-

tribute of FC rules and the fact that the preconditions of the rules do overlap. The method-

ology which is used in deciding what control action should be taken as the result of the

firing of several rules can be referred to as the process of "conflict resolution".

5.5 Defuzzification Methods

The defuzzification operation produces a non-FC action that best represent the MF

of an inferred FC action. Several defuzification methods have been suggested in litera-

ture. Among them, four methods which have been applied most often are described in

following [34].

• Tsukamoto’s Defuzzification Method
If monotonic MFs are used, then a crisp control action can be calculated by:

Z∗ =
∑n

i=1 ωixi

∑n
i=1 ωi

(5.6)

where n is the number of rules with firing strength (ωi) greater then 0 and xi is the

amount of control action recommended by rule i.
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• The Center Of Area (COA) Method
Assuming that a control action with a pointwise MF µC has been produced. The

COA method calculates the center of gravity of the distribution for the control ac-

tion. Assuming a discrete universe of discourse, we have:

Z∗ =
∑q

j=1 z jµC(z j)

∑q
j=1 µC(z j)

(5.7)

where q is the number of quantization levels of the output, z j is the amount of

control output at the quantization level j and µC(z j) represents its MF value in C.

• The Mean Of Maximum(MOM) Method
The MOM method generates a crisp control action by averaging the support values

which their membership values reach the maximum. For a discrete universe of

discourse, this is calculated by:

Z∗ =
l

∑
j=1

z j

l
(5.8)

where l is the number of quantized z values which reach their maximum member-

ships.

• Defuzzification when Output of Rules are Function of Their Inputs
FC rules may be written as a function of their inputs. For example,

Rule i: If X is Ai and Y is Bi then Z is fi(X ,Y );

assuming that αi is the firing strength of the rule i, then:

Z∗ =
∑n

i=1 αi fi(xi,yi)

∑n
j=1 αi

. (5.9)
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Chapter 6

IoT Device Selection Systems based on
Fuzzy Logic

In this chapter, we present four of the proposed fuzzy-based systems.

6.1 Problem Description

Due to high diversity, an IoT network consists of different nodes with different resource

capabilities. When multiple IoT nodes are deployed densely, there is a possibility that a

node may reside in the coverage area of multiple different nodes. When a specific task

request requires an IoT node to complete it, it is challenging to determine which is the

best one for that specific request. First, the IoT networks are heterogeneous rather than

homogeneous, which consists of many diverse IoT nodes which have largely different

demands on data traffic and data processing [35]. To maintain network quality and to have

better resource allocation, IoT nodes are selected based on different parameters or based

on event coverage. IoT node selection proves useful in mitigating common IoT-related

issues like resource allocation, network lifetime, and the confidence in the collected data,

by having the right IoT nodes active at a given time. IoT node selection helps in saving and

better managing resources by choosing the right subset of nodes to be active depending

on the task requirements [36].
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Figure 6.1: Fuzzy Logic Controller

Figure 6.2: Triangular and trapezoidal MF.

6.2 System Parameters

Based on Oppnets characteristics and challenges, we consider the following parameters

for implementation of our proposed system.

IoT Device Speed (IDS): There are different types of IoT devices in Oppnets sce-

narios such as: mobile phone terminals, computers, cars, trains, plains, robots and so on.

Considering that high speed IoT devices can transfer the information faster, they will be

selected with high probability.

IoT Device Distance from Task (IDDT): when an IoT device is called for action

near an event, the distance of the device from the event varies for different scenarios.

Depending on three distance levels, our system takes decisions based on the availability

of the IoT device node.

IoT Device Remaining Energy (IDRE): IoT devices in Oppnets are active and can

perform tasks and exchange data in different ways from each other. Consequently, some

IoT devices may have a lot of remaining power and other may have very little, when an

event occurs.
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IoT Device Storage (IDST): In DTNs data is carried by the IoT device until a com-

munication opportunity is available. Considering different IoT devices have different

storage capabilities, the selection desicion is made based on the storage capacity.

IoT Device Waiting Time for sending data (IDWT): Considering network conges-

tion, some IoT devices wait longer and some wait less for sending data. The IoT devices

that have been waiting longer have a high possibility to be selected.

IoT Device Security (IDSC): Security measures against an illegal request should be

considered. For establishing a secure IoT network, we consider three levels of SC for

secure IoT device selection.

IoT Device Node Centrality (IDNC): In Oppnets, finding the most suitable node is

challenging. Central nodes can be seen as good candidates to be relay nodes. Centrality

is the quantitative measure of the importance of the IoT device, in relation with other IoT

devices in the network. The middle node has three advantages over the other nodes: it has

more ties, it can reach all the others more quickly, and it controls the flow between the

others.

IoT Device Selection Decision (IDSD): The proposed system considers the following

levels for IoT device selection:

• Extremely Low Selection Possibility (ELSP) - The IoT device will have an ex-

tremely low probability to be selected.

• Very Low Selection Possibility (VLSP) - The IoT device will have very low proba-

bility to be selected.

• Low Selection Possibility (LSP) - There might be other IoT devices which can do

the job better.

• Medium Selection Possibility (MSP) - The IoT device is ready to be assigned a

task, but is not the ’chosen’ one.

• High Selection Possibility (HSP) - The IoT device takes responsibility of complet-

ing the task.

• Very High Selection Possibility (VHSP) - The IoT device has almost all the re-

quired information and potential to be selected and then allocated in an appropriate

position to carry out a job.
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• Extremely High Selection Possibility (EHSP) - The IoT device has all the required

information and the possibility of an IoT device to be selected is extremely high.

The abbrevitaions for the input and output parameters are as follows:

• Input parameters:

• IoT Device Speed (IDS)

• IoT Device Distance from Task (IDDT)

• IoT Device Remaining Energy (IDRE)

• IoT Device Storage (IDST)

• IoT Device Waiting Time for sending data (IDWT)

• IoT Device Security (IDSC)

• IoT Device Node Centrality (IDNC)

• Output parameter:

• IoT Device Selection Decision (IDSD)

6.3 Systems Implementation

There are several steps for implementing a system based on FL.

Parameter Selection: The selection of parameters depends on the challenges that Opp-

Nets face or a particular situation. Choosing the best parameters is a challenging task.

Special scenarios favor some parameters to others, making the choosing task more diffi-

cult. Furthermore, the number of parameters greatly affects the systems performance and

its resources.

Assign linguistic values to each parameter: When choosing linguistic values, we have

to choose the granularity of each linguistic term sets. Linguistic values are chosen so they

are as short as possible but still accurately represents the input and output parameters.

Find MFs: Based on the problem, it is important to select the appropriate input and output

MF which can be selected for the list of predefined ones, or be specifically designed.

When implementing a system based on fuzzy, the first issue to address is designing

the FC. The FC has four components: 1) The fuzzification process which modifies the
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input so it can be compared to the rules in the Rule Base (RB). 2) The inference engine

which evaluates the control rules and decides what will the output be. 3) Construction of

the RB as a set of rules that shows how to control the system. 4) Defuzzifying the outputs

of the inference engine to crisp output.

Fuzzy systems are used to represent knowledge that is imprecise. Humans exhibit

indecisiveness in their decision making due to continuing variations. Uncertainty in deci-

sion making is introduced in fuzzy MF by using a range of membership values associated

with input values.

The main part of our selection system is shown in Fig. 6.1. It consists of one Fuzzy

Logic Controller (FLC), which is the main part of our system and its basic elements which

are the fuzzifier, inference engine, FRB and defuzzifier [37].

In Fig. 6.2, are shown the membership functions we have used for our systems. We

have use polygonal type MF such as triangular and trapezoidal as they are less complex,

more flexible when splitting different term sets values. A triangular function is defined

by a lower limit x0−a0, an upper limit x0+a0 and a central value x0, x0−a0<x0<x0+a0.

While trapezoidal functions are defined by a lower limit x0−a0, a lower support limit x0,

an upper limit x1 +a0 and an upper support limit x1, x0−a0<x0<x1 +a0<x1. Also the use

of triangular and trapezoidal MF enables us to use unsymmetrical MF (see Fig. 6.7(d)).

Note that MFs may be different for the same parameters, but for different systems. MF

are constructed based on the scenario you wish to implement the system, or the parameter

specifics. However, there are parameters which limit the design process. For example,

IDSC is a very sensitive parameter, where a device is considered to have a high security

mechanism only for values above 90% (see Fig. 6.7(d)).

6.3.1 Description of IDSS1

The implemented system is shown in Fig. 6.3. We use three input parameters for FLC of

IDSS1:

• IoT Device Speed (IDS);

• IoT Device Remaining Energy (IDRE);

• IoT Device Distance from Task (IDDT);

Output Parameter:
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Figure 6.3: Proposed Implemented System IDSS1.

• IoT Device Selection Decision (IDSD);

The term sets for each input linguistic parameter are defined respectively as shown

below.

T (IDS) = {Slow(Sl),Medium(Md),Fast(Fa)}

T (IDRE) = {Low(Lw),Medium(Mdm),High(Hg)}

T (IDDT ) = {Near(Ne),Middle(Mi),Far(Fr)}

The term sets of IDSD are defined as follows:

{Very Low Selection Possibility (V LSP),

Low Selection Possibility (LSP),

Middle Selection Possibility (MSP),

High Selection Possibility (HSP),

Very High Selection Possibility (V HSP)}.

In Fig. 6.4 are shown the MFs of IDSS1 and the FRB of IDSS1 are shown as formu-

lated rules of the parameter space in Table 6.1. The FRB forms a fuzzy set of dimensions

|µ(IDS)|× |µ(IDRE)|× |µ(IDDT )|, where |µ(x)| is the number of terms on µ(x). The

FRB of IDSS1 has 27 rules which are linguistic IF-THEN conditions that have the form

"IF A THEN B", where A and B are propositions with linguistic variables.

6.3.2 Description of IDSS2

We consider four input parameters for FLC of IDSS2:
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Figure 6.4: Fuzzy MFs of IDSS1 and IDSS2, (a) IDS (b) IDDT (c) IDRE (d) IDST (e)

IDSD.

• IoT Device Speed (IDS);

• IoT Device Remaining Energy (IDRE);

• IoT Device Distance from Task (IDDT);

• IoT Device Storage (IDST).

Output Parameter:

• IoT Device Selection Decision (IDSD);
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Table 6.1: FRB of IDSS1.

No. IDS IDRE IDDT IDSD

1 Sl Lw Ne LSP

2 Sl Mdm Ne MSP

3 Sl Hg Ne VHSP

4 Sl Lw Mi VLSP

5 Sl Mdm Mi LSP

6 Sl Hg Mi HSP

7 Sl Lw Fr VLSP

8 Sl Mdm Fr VLSP

9 Sl Hg Fr LSP

10 Md Lw Ne MSP

11 Md Mdm Ne HSP

12 Md Hg Ne VHSP

13 Md Lw Mi LSP

14 Md Mdm Mi MSP

15 Md Hg Mi HSP

16 Md Lw Fr VLSP

17 Md Mdm Fr LSP

18 Md Hg Fr MSP

19 Fa Lw Ne HSP

20 Fa Mdm Ne VHSP

21 Fa Hg Ne VHSP

22 Fa Lw Mi MSP

23 Fa Mdm Mi HSP

24 Fa Hg Mi VHSP

25 Fa Lw Fr LSP

26 Fa Mdm Fr MSP

27 Fa Hg Fr HSP

In IDSS2, we have considered storage (IDST) as a new parameter due to its impor-

tance in data availability and durability. The success of the network is the ability to

achieve an end-to-end data delivery where relay nodes need to have enough storage to

keep the data without dropping until it reaches destination. The structure of IDSS2 is

shown in Fig. 6.5.

The term sets for each input linguistic parameter are defined respectively as shown

below.
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Figure 6.5: Proposed Implemented System IDSS2.

T (IDS) = {Slow(Sl),Medium(Md),Fast(Fa)}

T (IDDT ) = {Near(Ne),Middle(Mi),Far(Fr)}

T (IDRE) = {Low(Lw),Medium(Mdm),High(Hg)}

T (IDST ) = {Low(Lo),Medium(Me),High(Hi)}

We define the term set of IDSD as follows:

{Extremely Low Selection Possibility,

Very Low Selection Possibility (V LSP),

Low Selection Possibility (LSP),

Middle Selection Possibility (MSP),

High Selection Possibility (HSP),

Very High Selection Possibility (V HSP),

Extremely High Selection Possibility (EHSP)}.

The MFs are shown in Fig. 6.4 and the FRB of IDSS2 is shown in Table 8.2.

6.3.3 Description of IDSS3

For IDSS3, we decided to keep two of the former IDSS1 and IDSS2 systems parameters

(IDST and IDRE) and added two new parameters: IoT Device Waiting Time (IDWT) and

IoT Device Security (IDSC).
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Table 6.2: FRB of IDSS2.

No. IDS IDDT IDRE IDST IDSD N o. IDS IDDT IDRE IDST IDSD

1 Sl Ne Lw Lo VLSP 41 Md Mi Mdm Me HSP

2 Sl Ne Lw Me LSP 42 Md Mi Mdm Hi MSP

3 Sl Ne Lw Hi MSP 43 Md Mi Hg Lo HSP

4 Sl Ne Mdm Lo LSP 44 Md Mi Hg Me VHSP

5 Sl Ne Mdm Me MSP 45 Md Mi Hg Hi VLSP

6 Sl Ne Mdm Hi MSP 46 Md Fr Lw Lo LSP

7 Sl Ne Hg Lo MSP 47 Md Fr Lw Me VLSP

8 Sl Ne Hg Me HSP 48 Md Fr Lw Hi LSP

9 Sl Ne Hg Hi VHSP 49 Md Fr Mdm Lo MSP

10 Sl Mi Lw Lo VLSP 50 Md Fr Mdm Me LSP

11 Sl Mi Lw Me VLSP 51 Md Fr Mdm Hi MSP

12 Sl Mi Lw Hi LSP 52 Md Fr Hg Lo LSP

13 Sl Mi Mdm Lo VLSP 53 Md Fr Hg Me MSP

14 Sl Mi Mdm Me LSP 54 Md Fr Hg Hi HSP

15 Sl Mi Mdm Hi MSP 55 Fa Ne Lw Lo MSP

16 Sl Mi Hg Lo LSP 56 Fa Ne Lw Me HSP

17 Sl Mi Hg Me MSP 57 Fa Ne Lw Hi VHSP

18 Sl Mi Hg Hi VHSP 58 Fa Ne Mdm Lo VHSP

19 Sl Fr Lw Lo VLSP 59 Fa Ne Mdm Me VHSP

20 Sl Fr Lw Me VLSP 60 Fa Ne Mdm Hi VHSP

21 Sl Fr Lw Hi VLSP 61 Fa Ne Hg Lo VHSP

22 Sl Fr Mdm Lo VLSP 62 Fa Ne Hg Me VHSP

23 Sl Fr Mdm Me VLSP 63 Fa Ne Hg Hi VHSP

24 Sl Fr Mdm Hi LSP 64 Fa Mi Lw Lo LSP

25 Sl Fr Hg Lo VLSP 65 Fa Mi Lw Me MSP

26 Sl Fr Hg Me LSP 66 Fa Mi Lw Hi VHSP

27 Sl Fr Hg Hi HSP 67 Fa Mi Mdm Lo HSP

28 Md Ne Lw Lo LSP 68 Fa Mi Mdm Me VHSP

29 Md Ne Lw Me LSP 69 Fa Mi Mdm Hi VHSP

30 Md Ne Lw Hi HSP 70 Fa Mi Hg Lo VHSP

31 Md Ne Mdm Lo MSP 71 Fa Mi Hg Me VHSP

32 Md Ne Mdm Me MSP 72 Fa Mi Hg Hi VHSP

33 Md Ne Mdm Hi VHSP 73 Fa Fr Lw Lo LSP

34 Md Ne Hg Lo HSP 74 Fa Fr Lw Me LSP

35 Md Ne Hg Me VHSP 75 Fa Fr Lw Hi HSP

36 Md Ne Hg Hi VHSP 76 Fa Fr Mdm Lo MSP

37 Md Mi Lw Lo VLSP 77 Fa Fr Mdm Me HSP

38 Md Mi Lw Me MSP 78 Fa Fr Mdm Hi VHSP

39 Md Mi Lw Hi LSP 79 Fa Fr Hg Lo HSP

40 Md Mi Mdm Lo MSP 80 Fa Fr Hg Me VHSP

81 Fa Fr Hg Hi VHSP
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Figure 6.6: Proposed Implemented System IDSS3.

For IDSS3 as shown Fig. 6.6, we have used again four parameters but have added

IDSC and IDWT as two new parameters.

• IoT Device Storage (IDST);

• IoT Device Waiting Time (IDWT);

• IoT Device Remaining Energy (IDRE);

• IoT Device Security (IDSC);

Output Parameter:

• IoT Device Selection Decision (IDSD);

The term sets for each input linguistic parameter are defined respectively as shown

below.

T (IDWT ) = {Short(Sh),Medium(Mi),Long(Lg)}

T (IDSC) = {Weak(We),Moderate(Mo),Strong(St)}

T (IDRE) = {Low(Lo),Medium(Mdm),High(Hgh)}

T (IDST ) = {Small(Sm),Medium(Me),High(Hi)}
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Figure 6.7: Fuzzy MFs of IDSS3.

The MFs for input parameters of FLC are defined as:

µSh(IDWT ) = g(IDWT ;Sh0,Sh1,Shw0,Shw1)

µMi(IDWT ) = f (IDWT ;Mi0,Miw0,Miw1)

µLg(IDWT ) = g(IDWT ;Lg0,Lg1,Lgw0,Lgw1)

µWe(IDSC) = g(IDSC;We0,We1,Wew0,Wew1)

µMo(IDSC) = f (IDSC;Mo0,Mow0,Mow1)

µSt(IDSC) = g(IDSC;St0,St1,Stw0,Stw1)

µLo(IDRE) = g(IDRE;Lo0,Low0,Low1)

µMdm(IDRE) = g(IDRE;Mdm0,Mdm1,Mdmw0,Mdmw1)

µHgh(IDRE) = g(IDRE;Hgh0,Hgh0,Hghw0,Hghw1)

µSm(IDST ) = g(IDST ;Sm0,Sm1,Smw0,Smw1)

µMe(IDST ) = f (IDST ;Me0,Mew0,Mew1)

µHi(IDST ) = g(IDST ;Hi0,Hi1,Hiw0,Hiw1)
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The output linguistic parameter is the Actor Selection Decision (IDSD). The term sets
of IDSD are defined as follows:

{Extremely Low Selection Possibility,

Very Low Selection Possibility (V LSP),

Low Selection Possibility (LSP),

Middle Selection Possibility (MSP),

High Selection Possibility (HSP),

Very High Selection Possibility (V HSP),

Extremely High Selection Possibility (EHSP)}.

The MFs for the output parameter IDSD are defined as:

µELSP(IDSD) = g(IDSD;ELSP0,ELSP1,ELSPw0,ELSPw1)

µV LSP(IDSD) = f (IDSD;V LSP0,V LSPw0,V LSPw1)

µLSP(IDSD) = f (IDSD;LSP0,LSPw0,LSPw1)

µMSP(IDSD) = f (IDSD;MSP0,MSPw0,MSPw1)

µHSP(IDSD) = f (IDSD;HSP0,HSPw0,HSPw1)

µV HSP(IDSD) = f (IDSD;V HSP0,V HSPw0,V HSPw1).

µEHSP(IDSD) = g(IDSD;EHSP0,EHSP1,EHSPw0,EHSPw1).

The MFs are shown in Fig. 6.7 and the FRB for IDSS3 are shown in Table 6.3.

6.3.4 Description of IDSS4

For IDSS4 we have considered the importance of one device in the network in terms of its

connections and summarized this as a new parameter. The implemented system is shown

in Fig. 6.8. The parameters used are as follows:

• IoT Device Node Centrality (IDNC);

• IoT Device Storage (IDST);

• IoT Device Waiting Time (IDWT);

• IoT Device Remaing Energy (IDRE);

Output Parameter:
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Table 6.3: FRB of IDSS3.
No. IDWT IDSC IDRE IDST IDSD No. IDWT IDSC IDRE IDST IDSD

1 Sh We Lo Sm ELSP 41 Mi Mo Mdm Me LSP

2 Sh We Lo Me ELSP 42 Mi Mo Mdm Hi HSP

3 Sh We Lo Hi VLSP 43 Mi Mo Hgh Sm MSP

4 Sh We Mdm Sm ELSP 44 Mi Mo Hgh Me HSP

5 Sh We Mdm Me VLSP 45 Mi Mo Hgh Hi VHSP

6 Sh We Mdm Hi LSP 46 Mi St Lo Sm LSP

7 Sh We Hgh Sm VLSP 47 Mi St Lo Me MSP

8 Sh We Hgh Me LSP 48 Mi St Lo Hi VHSP

9 Sh We Hgh Hi HSP 49 Mi St Mdm Sm MSP

10 Sh Mo Lo Sm ELSP 50 Mi St Mdm Me VHSP

11 Sh Mo Lo Me ELSP 51 Mi St Mdm Hi EHSP

12 Sh Mo Lo Hi VLSP 52 Mi St Hgh Sm VHSP

13 Sh Mo Mdm Sm ELSP 53 Mi St Hgh Me EHSP

14 Sh Mo Mdm Me VLSP 54 Mi St Hgh Hi EHSP

15 Sh Mo Mdm Hi MSP 55 Lg We Lo Sm ELSP

16 Sh Mo Hgh Sm LSP 56 Lg We Lo Me VLSP

17 Sh Mo Hgh Me MSP 57 Lg We Lo Hi LSP

18 Sh Mo Hgh Hi VHSP 58 Lg We Mdm Sm VLSP

19 Sh St Lo Sm VLSP 59 Lg We Mdm Me MSP

20 Sh St Lo Me LSP 60 Lg We Mdm Hi HSP

21 Sh St Lo Hi HSP 61 Lg We Hgh Sm MSP

22 Sh St Mdm Sm LSP 62 Lg We Hgh Me HSP

23 Sh St Mdm Me HSP 63 Lg We Hgh Hi EHSP

24 Sh St Mdm Hi VHSP 64 Lg Mo Lo Sm ELSP

25 Sh St Hgh Sm HSP 65 Lg Mo Lo Me LSP

26 Sh St Hgh Me VHSP 66 Lg Mo Lo Hi MSP

27 Sh St Hgh Hi EHSP 67 Lg Mo Mdm Sm LSP

28 Mi We Lo Sm ELSP 68 Lg Mo Mdm Me MSP

29 Mi We Lo Me ELSP 69 Lg Mo Mdm Hi VHSP

30 Mi We Lo Hi VLSP 70 Lg Mo Hgh Sm HSP

31 Mi We Mdm Sm ELSP 71 Lg Mo Hgh Me VHSP

32 Mi We Mdm Me VLSP 72 Lg Mo Hgh Hi EHSP

33 Mi We Mdm Hi MSP 73 Lg St Lo Sm MSP

34 Mi We Hgh Sm LSP 74 Lg St Lo Me HSP

35 Mi We Hgh Me MSP 75 Lg St Lo Hi VHSP

36 Mi We Hgh Hi VHSP 76 Lg St Mdm Sm HSP

37 Mi Mo Lo Sm ELSP 77 Lg St Mdm Me EHSP

38 Mi Mo Lo Me VLSP 78 Lg St Mdm Hi EHSP

39 Mi Mo Lo Hi LSP 79 Lg St Hgh Sm EHSP

40 Mi Mo Mdm Sm VLSP 80 Lg St Hgh Me EHSP

81 Lg St Hgh Hi EHSP

• IoT Device Selection Decision (IDSD);
The term sets for each input linguistic parameter are defined as follows.
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Figure 6.8: Proposed Implemented System IDSS4.
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Figure 6.9: Fuzzy MFs for IDSS4.
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Table 6.4: FRB of IDSS4.
No. IDNC IDWT IDRE IDST IDSD No. IDNC IDWT IDRE IDST IDSD

1 LIp Sho Lo Sm ELSP 41 MIp Mi Mdm Me MSP

2 LIp Sho Lo Me ELSP 42 MIp Mi Mdm Hi HSP

3 LIp Sho Lo Hi ELSP 43 MIp Mi Hgh Sm MSP

4 LIp Sho Mdm Sm ELSP 44 MIp Mi Hgh Me VHSP

5 LIp Sho Mdm Me ELSP 45 MIp Mi Hgh Hi EHSP

6 LIp Sho Mdm Hi LSP 46 MIp Lg Lo Sm ELSP

7 LIp Sho Hgh Sm VLSP 47 MIp Lg Lo Me MSP

8 LIp Sho Hgh Me LSP 48 MIp Lg Lo Hi VHSP

9 LIp Sho Hgh Hi HSP 49 MIp Lg Mdm Sm MSP

10 LIp Mi Lo Sm ELSP 50 MIp Lg Mdm Me VHSP

11 LIp Mi Lo Me ELSP 51 MIp Lg Mdm Hi EHSP

12 LIp Mi Lo Hi VLSP 52 MIp Lg Hgh Sm VHSP

13 LIp Mi Mdm Sm ELSP 53 MIp Lg Hgh Me EHSP

14 LIp Mi Mdm Me VLSP 54 MIp Lg Hgh Hi EHSP

15 LIp Mi Mdm Hi LSP 55 VIp Sho Lo Sm LSP

16 LIp Mi Hgh Sm VLSP 56 VIp Sho Lo Me VLSP

17 LIp Mi Hgh Me MSP 57 VIp Sho Lo Hi LSP

18 LIp Mi Hgh Hi HSP 58 VIp Sho Mdm Sm VLSP

19 LIp Lg Lo Sm ELSP 59 VIp Sho Mdm Me MSP

20 LIp Lg Lo Me VLSP 60 VIp Sho Mdm Hi HSP

21 LIp Lg Lo Hi MSP 61 VIp Sho Hgh Sm MSP

22 LIp Lg Mdm Sm LSP 62 VIp Sho Hgh Me VHSP

23 LIp Lg Mdm Me MSP 63 VIp Sho Hgh Hi EHSP

24 LIp Lg Mdm Hi VHSP 64 VIp Mi Lo Sm ELSP

25 LIp Lg Hgh Sm HSP 65 VIp Mi Lo Me LSP

26 LIp Lg Hgh Me VHSP 66 VIp Mi Lo Hi MSP

27 LIp Lg Hgh Hi EHSP 67 VIp Mi Mdm Sm LSP

28 MIp Sho Lo Sm LSP 68 VIp Mi Mdm Me MSP

29 MIp Sho Lo Me VLSP 69 VIp Mi Mdm Hi VHSP

30 MIp Sho Lo Hi LSP 70 VIp Mi Hgh Sm HSP

31 MIp Sho Mdm Sm VLSP 71 VIp Mi Hgh Me VHSP

32 MIp Sho Mdm Me LSP 72 VIp Mi Hgh Hi EHSP

33 MIp Sho Mdm Hi HSP 73 VIp Lg Lo Sm VLSP

34 MIp Sho Hgh Sm LSP 74 VIp Lg Lo Me HSP

35 MIp Sho Hgh Me HSP 75 VIp Lg Lo Hi VHSP

36 MIp Sho Hgh Hi VHSP 76 VIp Lg Mdm Sm HSP

37 MIp Mi Lo Sm ELSP 77 VIp Lg Mdm Me VHSP

38 MIp Mi Lo Me VLSP 78 VIp Lg Mdm Hi EHSP

39 MIp Mi Lo Hi MSP 79 VIp Lg Hgh Sm EHSP

40 MIp Mi Mdm Sm VLSP 80 VIp Lg Hgh Me EHSP

81 VIp Lg Hgh Hi EHSP

T (IDNC) = {LittleImportant(LI p),MediumImportant(MI p),VeryImportant(V I p)}

T (IDWT ) = {Short(Sho),Medium(Mi),Long(Lg)}

T (IDRE) = {Low(Lo),Medium(Mdm),High(Hgh)}

T (IDST ) = {Small(Sm),Medium(Me),High(Hi)}
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6. IoT Device Selection Systems based on Fuzzy Logic

The MFs for input parameters are defined as follows.

µLI p(IDNC) = g(IDNC;LI p0,LIp1,LI pw0,LIpw1)

µMI p(IDNC) = f (IDNC;MI p0,MI pw0,MI pw1)

µV I p(IDNC) = g(IDNC;V Ip0,V I p1,V I pw0,V I pw1)

µSho(IDWT ) = g(IDWT ;Sho0,Sho1,Show0,Show1)

µMi(IDWT ) = f (IDWT ;Mi0,Miw0,Miw1)

µLg(IDWT ) = g(IDWT ;Lg0,Lg1,Lgw0,Lgw1)

µLo(IDRE) = g(IDRE;Lo0,Lo1,Low0,Low1)

µMdm(IDRE) = g(IDRE;Mdm0,Mdm1,Mdmw0,Mdmw1)

µHgh(IDRE) = g(IDRE;Hgh0,Hgh1,Hghw0,Hghw1)

µSm(IDST ) = g(IDST ;Sm0,Sm1,Smw0,Smw1)

µMe(IDST ) = f (IDST ;Me0,Mew0,Mew1)

µHi(IDST ) = g(IDST ;Hi0,Hi1,Hiw0,Hiw1)

The small letters w0 and w1 mean left width and right width, respectively.
The output linguistic parameter is the IoT Device Selection Decision (IDSD). We

define the term set of IDSD as:

{Extremely Low Selection Possibility,

Very Low Selection Possibility (V LSP),

Low Selection Possibility (LSP),

Middle Selection Possibility (MSP),

High Selection Possibility (HSP),

Very High Selection Possibility (V HSP),

Extremely High Selection Possibility (EHSP)}.

The MFs for the output parameter IDSD are defined as:

µV LSP(IDSD) = g(IDSD;V LSP0,V LSP1,V LSPw0,V LSPw1)

µLSP(IDSD) = g(IDSD;LSP0,LSP1,LSPw0,LSPw1)

µMSP(IDSD) = g(IDSD;MSP0,MSP1,MSPw0,MSPw1)

µHSP(IDSD) = g(IDSD;HSP0,HSP1,HSPw0,HSPw1)

µV HSP(IDSD) = g(IDSD;V HSP0,V HSP1,V HSPw0,V HSPw1).

The MFs are shown in Fig. 6.9. The FRB has 81 rules.
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Chapter 7

Evaluation of Proposed Systems

After showing the implemented systems in Chapter 6, in this chapter we show their per-

formance evaluation. System evaluation is the process of assessing the performance of

the system based on input variations. We used FL, which consists of three stages: input

phase, processing stage and output stage. The processing stage is done by the inference

engine which simplifies the design procedure with options to add new parameters, vari-

ables, membership functions and rules. In this chapter, we present the details of our

systems, the parameter selection, explanation and the MF selection. The simulations aim

to explore the performance of the proposed systems and evaluate each parameter effect on

the output value. The systems were evaluated by computer simulations. The simulations

were carried out in a Linux Ubuntu 16.04 LTS OS computer with these specifications:

RAM (10.6GB), CPU i5 (3.2 GHz x 4) and SSD (300 GB). For simulation, we used our

implemented FuzzyC system [38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51]. The

FuzzyC is a simulation system written in C language and equipped with Fuzzy library.

7.1 Simulation Results for IDSS1

The simulations of our first proposed system are shown in Fig.7.1. In this figure we show

the relation of IDSD versus the IDS, IDDT and IDRE and evaluate the effect of each

parameter on the IDSD.

In OppNets due to the lack of a path from source to destination, IoT devices depend

on the new contacts they make to deliver the data. Some devices are static, therefore not

so active. They depend on other devices mobility speed to make contact with them so they

can exchange and receive data. However being dependent on other nodes, greatly reduces
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Figure 7.1: Simulation results of IDSS1.

their importance in the network. The effect of speed is shown by comparing Fig.7.1(a)

with Fig.7.1(b) and Fig.7.1(b) with Fig.7.1(c), for IDRE=0.1 and IDDT=0.2. When IDS

goes from 0.1 to 0.5 and from 0.5 to 0.9 we have an increase of 29% and 28% in IDSD,

respectively. The reason for this increase is that mobile devices which move across the

network, make new connections. So the number of new contacts is greatly affected by the

speed of the devices.

With the results obtained from the simulations, it should be noted that beyond IDDT=0.8

there is not much difference in the output. The reason is that different parameteres are

weighted differently based on their importance in the network. For example, residual en-

ergy of one IoT device is essential to network longevity. Some IoT devices may be fully

resourced, but lack energy therefore are useless. For that reason, IDRE has a very strong
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effect on IDSD. For example, in Fig.7.1(c), for IDDT=0.5, when IDRE goes from 0.1 to

0.5 and from 0.1 to 0.9, we see an increase of 38% and 47% in IDSD, respectively.

The distance between the IoT device and the task is measured in order to be able to

asses whether the said IoT device has the necessary resources for reaching the task and

then completing it. The distance between devices and the event is calculated for each

device with sensors mounted on them (see Chapter. 8) and then the nearest device to

event is favored. In Fig.7.1(b), for IDS=0.5 and IDRE=0.9, we study the effect of IDDT

in IDSD. When IDSD increases from 0.2 to 0.5, IDSD decreases 17%. If IDSD increases

from 0.5 to 0.9, IDSD decreases even further by 29%. Distance greatly affects the IDSD

as it makes IoT devices waste valuable resources. However, a long distance doesn’t only

affect the device’s resources, but also the time the IoT device needs to complete the task.

In emergency scenarios that need prompt action, this is intolerable.

7.2 Simulation Results for IDSS2

In Fig.7.2, Fig.7.3 and Fig.7.4 are shown the simulation result of IDSS2. In IDSS2,

we have added a new parameter, IDST. Adding a fourth parameter to a system, greatly

increases its complexity and computational time.

Storage is one of the most important parameters in OppNets considering they use

store carry forward mechanism. We have used this parameter in most of our proposed

systems due to its importance. Routing in OppNets is very challenging task since there

are no pre-established routes between two devices and data delivery relies on the storage

capabilities of devices. The effects of varying storage can be observed in Fig.7.2(a), for

IDRE=0.9. When IDST of a device, increases from 0.3 to 0.5 and from 0.5 to 0.9, IDSD

increases 13% and 15%, respectively. Due to the fact that devices are heterogeneous, we

have selected this parameter to include all the scenarios where devices have limited or

adequate storage. When one IoT device receives a message for forwarding, it stores it

in its buffer and eventually forwards it to the destination device if they ever meet, or to

another device.

The other three parameters are the same parameters as previously used in IDSS1. In

Fig.7.3, for IDST=0.3 and IDRE=0.5, we observe that when IDDT increases from 0.1

to 0.9 and from 0.5 to 0.9, IDSD decreases 25% and 15%, respectively. We compare

Fig.7.2(a) with Fig.7.3(a) and Fig.7.2(a) with Fig.7.4(a) to evaluate the effect of IDS on
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Figure 7.2: Simulation results of IDSS2 for IDS = 0.1.

IDSD for IDSS2. When IDS goes from 0.1 to 0.5 and from 0.1 to 0.9 for IDRE=0.9 and

IDST=0.3, IDST increases 13% and 28%, respectively.

IDSS2 system uses three parameters same to IDSS1, with only one new parameter.

However, these systems are significantly different due to the way how these parameters

are weighted and assessed. The significance of a parameter is assessed in respect to

others. Each one of them is weighted differently based on which parameter should be

emphasized.
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Figure 7.3: Simulation results of IDSS2 for IDS = 0.5.

68



7. Evaluation of Proposed Systems

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
D
S
D
 
[
u
n
i
t
]

IDST

IDS=0.9-IDDT=0.1

IDRE=0.1

IDRE=0.5

IDRE=0.9

(a) IDS=0.9-IDDT=0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
D
S
D
 
[
u
n
i
t
]

IDST

IDS=0.9-IDDT=0.5

IDRE=0.1

IDRE=0.5

IDRE=0.9

(b) IDS=0.9-IDDT=0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
D
S
D
 
[
u
n
i
t
]

IDST

IDS=0.9-IDDT=0.9

IDRE=0.1

IDRE=0.5

IDRE=0.9

(c) IDS=0.9-IDDT=0.9

Figure 7.4: Simulation results of IDSS2 for IDS = 0.9.
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7.3 Simulation Results for IDSS3

Our next set of results is shown in Fig.7.5, Fig.7.6 and Fig.7.7. Same as IDSS3, in IDSS4

we used four input parameters, but added IDSC and IDWT as two new parameters to-

gether with IDRE and IDST. In the previous systems we saw the effect of IDRE and

IDST on IDSD.

In OppNets, in the absence of a global infrastructure, all devices are expected to par-

ticipate in the forwarding process to increase the communication opportunities. However,

even though the overall throughput of the network is increased, having all types of devices

take part in the forwarding process, poses a security threat. Different from infrastructure

based networks, security is a very big challenge in OppNets. The lack of a stable topol-

ogy makes it difficult to implement device authentication with centralized authentication

servers. When two devices come in contact with each other there are three possible sce-

narios: Device A and Device B do not trust each other since it is the first time they come

in contact. Device A fully trusts Device B having previously met. Device A doesn’t fully

trust Device B. So based on the level of trust that devices have for one another and the

level of security mechanisms they have, we have used IDSC parameter. In Figure 7.5, for

IDRE=0.1 and IDST=0.7, when IDSC increases from 0.1 to 0.5 and from 0.5 to 0.9, IDSD

increases 6% and 22%, respectively. It can be seen that when IDSC increases from 0.1 to

0.5, IDSD has a very low increase. Devices joining or quitting the network have different

security mechanisms. Security is something that cannot be compromised, especially in a

network which depends on new devices being added to the network. So devices with very

high security mechanisms are preferred to others.

Devices have random waiting time based on many factors, such as mobility patterns,

speed, work load and so on. In case of an event, devices are asked to cooperate and

selflessly offer their resources based on the network needs. However, many devices show

selfish behavior and don’t wait around an event to help complete it, but move away. These

devices are considered uncooperative devices and are not preferable to be selected. We

observe the effect of IDWT by comparing Fig.7.5(a) with Fig.7.6(a), and Fig.7.6(a) with

Fig.7.7(a), for IDRE=0.9 and IDST=0.3. When IDWT increases from 0.1 to 0.5 and from

0.5 to 0.9, IDSD increases 14% and 11%, respectively. Some devices may be busier than

others, therefore the ones that wait longer are more likely to be selected.
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Figure 7.5: Simulation results of IDSS3 for IDWT = 0.1.
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Figure 7.6: Simulation results of IDSS3 for IDWT = 0.5.
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Figure 7.7: Simulation results of IDSS3 for IDWT = 0.9.
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Figure 7.8: Simulation results of IDSS4 for IDNC = 0.1.

74



7. Evaluation of Proposed Systems

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
D
S
D
 
[
u
n
i
t
]

IDST

IDNC=0.5-IDWT=0.1

IDRE=0.1

IDRE=0.5

IDRE=0.9

(a) IDNC=0.5-IDWT=0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
S
D
 
[
u
n
i
t
]

IDST

IDNC=0.5-IDWT=0.5

IDRE=0.1

IDRE=0.5

IDRE=0.9

(b) IDNC=0.5-IDWT=0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
S
D
 
[
u
n
i
t
]

IDST

IDNC=0.5-IDWT=0.9

IDRE=0.1

IDRE=0.5

IDRE=0.9

(c) IDNC=0.5-IDWT=0.9

Figure 7.9: Simulation results of IDSS4 for IDNC = 0.5.
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Figure 7.10: Simulation results of IDSS4 for IDNC = 0.9.
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7.4 Simulation Results for IDSS4

The simulation results of IDSS4 are shown in Figures Fig.7.8, Fig.7.9, and Fig.7.10. We

used four input parameters and observe the effect of a new parameter: IDNC. Centrality

in OppNets, differs from networks were topology of the network is known by the devices.

However identification of central devices is very important for the diffusion of the data

across the network. In OppNets due to their specific nature, devices do not have global

knowledge about the network, so the centrality we have referred to is local. So a high

IDNC means that devices are influential and important to the network.

To see the effect of IDNC on IDSD, we compare figures Fig.7.8(a) with Fig.7.9(a)

and Fig.7.9(a) with Fig.7.10(a), for IDST=0.3 and IDRE=0.9. When IDNC increases

from 0.1 to 0.5 and from 0.5 to 0.9, IDSD increases 12% and 25%, respectively. A high

IDNC means that devices are more influential, have more connections and can propagate

the information easier than other devices. Even though the connection between devices

change over time, centrality is a concept that helps us understand the network connectivity

at certain times. Using IDNC as a parameter helps us spread information across the

network by using the number of connections a device has.

7.5 Other Systems

To study the OppNets scenarios more extensively, we have implemented many other sys-

tems in our previous published works. Our goal was to run simulations to include as many

scenarios as possible. Attempting to be more inclusive we have broadened our parameters

pool. In one of our previous papers, we introduce IDCD (IoT Device Contact Duration)

as a new parameter [43]. Its MFs are shown in Fig. 7.11(a). Contact duration between two

devices should be long enough so the whole message is transferred without interruption.

However, contact duration is affected by the node’s transmission range and its mobility.

In some cases more than one contact may be needed to transmit the whole message. In an

OppNet, devices with high mobility create contacts with a very short duration time, while

less mobile devices will stay in contact with each other for a longer time, since they will

not go out of range of each other. In this case, the opportunity of the whole message to be

transmitted to the next node is increased, but the network mobility will be affected since

it will be limited to a small confined area.
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Figure 7.11: IDCD and its MFs.

Contact duration between two devices has a major impact on selection decision. In

Fig. 7.11(b), for IDST 0.9, when IDCD is increased from 0.2 to 0.5, IDSD is increased

36%. But when IDCD further increases from 0.5 to 0.8, IDSD is decreased 36%. This

is because a short time of contact means that two devices may not have enough time to

establish a connection. In realistic OppNet environments, contact durations between IoT

nodes are very short due to high node mobility. For example, high speed IoT nodes such

as vehicles, create many contacts with very short durations. For these cases to compen-

sate the high speed, IoT nodes communicate via long range communications media WiFi

(802.11g). While hand-held devices communicate via Bluetooth which have shorter com-

munication range, but fairly lower speeds than vehicles. When IoT nodes encounter each

other, they stay in contact with other IoT nodes depending on their transmission range

or speed. However, contact duration must be long enough in order that the message is

transferred during a single contact.
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7.6 Summary and Discussion

In this chapter we presented the simulation results for our four proposed systems, mea-

suring the performance based on the different parameters used. We used Fuzzy C, which

performs the processing stage of FL. The systems use three and four parameters selected

based on the IoT devices’ properties. IDSS1, is the only system that uses three input pa-

rameters. Comparing it with IDSS2, IDSS3, IDSS4, we note that while IDSS1 is much

simpler to implement and requires significantly less resources as it has fewer rules, its per-

formance lacks. However, by using three parameters instead of four, we trade parameter

inclusion with the computational time.

We used IDRE in all of our systems since most of the devices are battery powered

with some having very limited battery capacity. However devices need sufficient battery

to be able to perform basic routing tasks, perform more advanced ones if necessary and

also be able to support Fuzzy C for the selection process since each device must complete

the selection process within itself. A high battery level or remaining energy, increased the

possibility of one device to be selected up to 47%. Because this resource is scarce, devices

preserve energy by going into idle mode while not busy, or in less preferred scenarios, they

exhibit selfish behavior and don’t offer their resources as a way of preserving battery.

Other parameters used, such as IDS, affected IDSD by increasing it up to 29%. While

a high IDSC increases IDSD 22%. Security is a great concern in OppNets since it is hard

to quantify the security level of devices. Other parameters such as IDST affect IDSD

by increasing it 25%. Devices have to carry data for an undefined amount of time so

without enough storage they are useless in OppNets. Devices are scattered across the

network some being more remote than others. This remoteness is translated in nodes

being separated from the others, therefore do not make enough contacts to spread the

network connectivity. That is why a high IDNC increases IDSD up to 25%. What is clear

is that different parameters affect IDSD differently, based on their importance or specific

scenarios.
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Chapter 8

Testbed Implementation

8.1 Testbed Settings

In this chapter, we propose and implement a Fuzy-based system for selection of IoT nodes

in OppNets: INSS1. INSS1 considers four input parameters: Node’s Distance from Task

(NDT), Node’s Remaining Energy (NRE), Node’s Buffer Occupancy (NBO) and Node

Inter Contact Time (NICT). To better evaluate the proposed system, we implemented a

testbed and compared experimental results with the simulation results. The testbed setup

shown in Fig. 8.1, consists of the hardware and software part. Different data sensing

sensors are mounted on Arduino Uno via IoT Tab Shield 4. This sensed data is collected

by a processing device which is connected to Arduino Uno via USB cable. The processing

device consists of Raspberry Pi 3 model B+ which operates on an optimized Debian based

system, or a Mac OS laptop [54]. We have implemented the Testbed as shown in Fig. 8.2

to test the proposed simulation system. For the software part, we used Arduino IDE to

collect the sensed data, Processing language to read this data and FuzzyC to evaluate

which of the nodes based on the data is more likely to be selected for a certain task. The

hardware is mounted on different IoT nodes to imitate a real life scenario. In Fig. 8.2(a)

and Fig. 8.2(b) are shown static and mobile IoT nodes, respectively. In static IoT nodes,

the data is sensed by the sensor mounted in Arduino with IoT Tab Shield 4, read and

processed using the laptop. For mobile IoT nodes, we use Raspberry Pi 3 model B+ for

data reading and processing, which is power supplied by a 24000mAh battery with a lcd

display for battery level reading.
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Figure 8.1: Testbed Setup.

(a) Statically deployed IoT Nodes. (b) Mobile IoT Nodes.

Figure 8.2: Testbed Implementation.
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8.2 Testbed Parameters

The structure of the proposed system for the IoT node selection is shown in Fig. 8.3.

Based on the OppNets challenges, we have considered the following parameters for the

implementation of INSS1:

Node’s Distance to Task (NDT): The distance of a node from the task is an important

parameter. An IoT node will be selected to carry out a task with high possibility if the

node is close to the task.

Node’s Remaining Energy (NRE): Depending on the need and the difficulty of the

task, different IoT nodes have different levels of remaining energy. Some IoT nodes have

limited energy during a certain time which affects how long will this node operate. This

is a very important parameter as it affects the longevity and the topology of the network,

since in Oppnet each node is a combination of source, influencer node or a destination.

Node’s Buffer Occupancy (NBO): In an network that consists of diverse IoT nodes

with different resources, buffer occupancy at a certain time is very important. Some IoT

nodes are in more advantageous position than others, making them more likely to deliver

messages thus making them busier than others. Due to high amount of traffic, these

nodes’s buffer may overflow affecting the average throughput and the dropping ratio.

Node Inter Contact Time (NICT): The inter-contact time measures the time between

the end of previous contact and the beginning of a new one between two IoT nodes.

Shorter inter-contact time means having more opportunities to forward the message to the

next IoT node.

The output parameter for INSS1 is NSD:

Node Selection Decision (NSD): When an task requires an IoT node to complete it,

an evaluation of all the IoT nodes which are part of the network is made in order to choose

the best one, but also to manage resources efficiently.

8.3 Fuzzy-based Testbed

Fuzzy sets and FL [52] have been developed to manage vagueness and uncertainty in

a reasoning process of an intelligent system such as a knowledge based system, an ex-

pert system or a logic control system. In this chapter, we use fuzzy logic system called

FuzzyC [53] to implement the proposed fuzzy-based testbed.
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NSDFLC
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Figure 8.3: Proposed fuzzy-based testbed model.

Table 8.1: Parameters and their term sets for FLC.
Parameters Term Sets
Node’s Distance to Task (NDT) Near (Nr), Close (Cl), Far (Fr)

Node’s Remaining Energy (NRE) Low (Lo), Medium (Md), High (Hg)

Node’s Buffer Occupancy (NBO) Minimum (Min), Medium (Med), Maximum

(Max)

Node Inter Contact Time (NICT) Short (Sh), Medium (Mdm), Long (Lng)

Node Selection Decision (NSD) Extremely Low Selection Possibility

(ELSP), Very Low Selection Possibility

(VLSP),Low Selection Possibility (LSP),

Medium Selection Possibility (MSP), High

Selection Possibility (HSP), Very High

Selection Possibility (VHSP), Extremely

High Selection Possibility (EHSP)

The structure of the proposed system is shown in Fig. 8.3. The term sets for these

parameters are shown in Table 8.1. When an task requires an IoT node to complete it, an

evaluation of all the IoT nodes which are part of the network is made in order to choose

the best one, but also to manage resources efficiently. Since we have used four input

parameters for the INSS1 our systems has 81 rules. These parameters will be represented

from numerical form into linguistic variables. We use fuzzy membership functions to

quantify the linguistic term. The fuzzy membership functions of our system our shown in

Fig. 8.4. We use triangular and trapezoidal membership functions for FLC, because they

are suitable for real-time operations.
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Table 8.2: FRB for INSS1.
No. NDT NRE NBO NICT NSD No. NDT NRE NBO NICT NSD No. NDT NRE NBO NICT NSD
1 Nr Lo Min Sh EHSP 28 Cl Lo Min Sh VHSP 55 Fr Lo Min Sh VHSP

2 Nr Lo Min Mdm VHSP 29 Cl Lo Min Mdm MSP 56 Fr Lo Min Mdm LSP

3 Nr Lo Min Lng VHSP 30 Cl Lo Min Lng MSP 57 Fr Lo Min Lng LSP

4 Nr Lo Med Sh EHSP 31 Cl Lo Med Sh HSP 58 Fr Lo Med Sh MSP

5 Nr Lo Med Mdm HSP 32 Cl Lo Med Mdm VLSP 59 Fr Lo Med Mdm VLSP

6 Nr Lo Med Lng HSP 33 Cl Lo Med Lng VLSP 60 Fr Lo Med Lng VLSP

7 Nr Lo Max Sh HSP 34 Cl Lo Max Sh LSP 61 Fr Lo Max Sh VLSP

8 Nr Lo Max Mdm LSP 35 Cl Lo Max Mdm ELSP 62 Fr Lo Max Mdm ELSP

9 Nr Lo Max Lng LSP 36 Cl Lo Max Lng ELSP 63 Fr Lo Max Lng ELSP

10 Nr Md Min Sh EHSP 37 Cl Md Min Sh EHSP 64 Fr Md Min Sh VHSP

11 Nr Md Min Mdm EHSP 38 Cl Md Min Mdm HSP 65 Fr Md Min Mdm MSP

12 Nr Md Min Lng EHSP 39 Cl Md Min Lng HSP 66 Fr Md Min Lng MSP

13 Nr Md Med Sh EHSP 40 Cl Md Med Sh VHSP 67 Fr Md Med Sh HSP

14 Nr Md Med Mdm HSP 41 Cl Md Med Mdm LSP 68 Fr Md Med Mdm VLSP

15 Nr Md Med Lng HSP 42 Cl Md Med Lng LSP 69 Fr Md Med Lng VLSP

16 Nr Md Max Sh VHSP 43 Cl Md Max Sh MSP 70 Fr Md Max Sh LSP

17 Nr Md Max Mdm MSP 44 Cl Md Max Mdm VLSP 71 Fr Md Max Mdm ELSP

18 Nr Md Max Lng MSP 45 Cl Md Max Lng VLSP 72 Fr Md Max Lng ELSP

19 Nr Hg Min Sh EHSP 46 Cl Hg Min Sh EHSP 73 Fr Hg Min Sh EHSP

20 Nr Hg Min Mdm EHSP 47 Cl Hg Min Mdm EHSP 74 Fr Hg Min Mdm VHSP

21 Nr Hg Min Lng EHSP 48 Cl Hg Min Lng EHSP 75 Fr Hg Min Lng VHSP

22 Nr Hg Med Sh EHSP 49 Cl Hg Med Sh EHSP 76 Fr Hg Med Sh EHSP

23 Nr Hg Med Mdm EHSP 50 Cl Hg Med Mdm VHSP 77 Fr Hg Med Mdm HSP

24 Nr Hg Med Lng EHSP 51 Cl Hg Med Lng VHSP 78 Fr Hg Med Lng HSP

25 Nr Hg Max Sh EHSP 52 Cl Hg Max Sh EHSP 79 Fr Hg Max Sh VHSP

26 Nr Hg Max Mdm VHSP 53 Cl Hg Max Mdm MSP 80 Fr Hg Max Mdm LSP

27 Nr Hg Max Lng VHSP 54 Cl Hg Max Lng MSP 81 Fr Hg Max Lng LSP

8.4 Evaluation Results

In this subsection, we will present the simulation results of the system. The results for

the INSS1 are shown in figure Fig. 8.5, Fig. 8.6, Fig. 8.7. We show the relation between

the possibility of an IoT node to be selected (NSD) to carry out a task, versus NDT, NRE,

NBO and NICT.

In Fig. 8.5(a), Fig. 8.5(b) and Fig. 8.5(c), are shown the figures for three different

values of energy, from lowest to highest. To show how remaining energy affects the

selection of an IoT node, we compare Fig. 8.5(a) with Fig. 8.5(b) and Fig. 8.5(b) with

Fig. 8.5(c), for NICT=0.4 and NBO=0.9. For NRE=0.1 to NRE=0.5, NSD is increased

12% and 25% for NRE=0.5 to NRE=0.9. IoT nodes who have higher residual energy

have better odds of staying connected to the network.

In Fig. 8.6(a), Fig. 8.6(b) and Fig. 8.6(c) are shown the simulation results for NDT=0.5.

Comparing Fig. 8.6(a) with Fig. 8.5(a), when NICT=0.4 and NBO=0.1, we see that tha
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Figure 8.4: Fuzzy membership functions.

NDS is decreased 16%. This means that nodes which are far from task, are less likely to

be selected since these IoT nodes will need more resources to reach this task.

In Fig. 8.7(a) and Fig. 8.7(c), the NDT is increased to 0.9. We have a further de-

crease of NSD with the increase of NDT. In Fig. 8.7(a), for NICT=0.2 to NICT=0.4 and

NBO=0.1, we see that NSD is decreased 38%. IoT nodes that take a longer time to come

in contact with other nodes will create less connections, thus the possibility that the IoT

node be selected decreases. To see the effect that buffer occupancy has on NSD, we

take NICT=0.4 for NBO=0.9 and NBO=0.1 in Fig. 8.7(c). We see that NSD is increased

40% with the decrease of NBO from NBO=0.9 to NBO=0.1. The buffer of some IoT
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nodes may be occupied or fully occupied. Since these networks use store-carry-forward

mechanism, an occupied buffer will cause a congestion due to buffer overflow.

8.4.1 Experimental Results

The experimental results are shown in Fig. 8.8, Fig. 8.9, Fig. 8.10. In Fig. 8.8(a) and

Fig. 8.8(c) are shown the results for NDT=Near, NRE=Low and NDT=Near, NRE=High,

respectively. In the paragraph above we showed the result of the simulation system. Since

results obtained from emulators are more accurate than those obtained from simulators,

we implemented a testbed to further evaluate our proposed systems. During the testbed

implementation we gathered a lot of data from the sensors.

The simulation results in Fig. 8.5(a), Fig. 8.5(b) and Fig. 8.5(c) are close with ex-

perimental results in Fig. 8.8(a), Fig. 8.8(b) and Fig. 8.8(c). However, there are some

variations from point to point which represent the different outside factors that affect

experimental results. In Fig. 8.9(a), Fig. 8.9(b) and Fig. 8.9(c) are shown results for

NDT=Close, NRE=Low, NDT=Close, NRE=Medium and NDT=Close, NRE=Long. In

Fig. 8.10(a). Fig. 8.10(b) and Fig. 8.10(c), are shown results for NDT=Far, NRE=Low,

NDT=Far, NRE= Medium and NDT=Far, NRE=High. For all the above results, we can

see that the simulation results are close to the experimental results.
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Figure 8.5: Simulation Results for NDT=0.1.
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Figure 8.6: Simulation Results for NDT=0.5.
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Figure 8.7: Simulation Results for NDT=0.9.
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Figure 8.8: Simulation Results for NDT=Near.
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Figure 8.9: Simulation Results for NDT=Close.
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Figure 8.10: Simulation Results for NDT=Far.
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Chapter 9

Concluding Remarks

9.1 Conclusions and Future Work

In this thesis, we proposed and implemented four fuzzy-based simulation systems and

one testbed that decide whether one IoT device will be selected for a specific task based

on the device’s parameters. The thesis is organized as follows:

In Chapter 1, we presented the introduction, background of the thesis and its content.

Also the outline of this thesis is included in this chapter. In Chapter 2 we descibe some of

the wireless networks such as NGWN, SDN, SDWN and MANET and their characteristic.

Chapter 3, we provided an introduction of IoT and OppNets. It described their main

characteristic and applications, OppNets protocol stack, architecture and challenges. In

Chapter 4 we introduced the concept of IA and described some of the most commonly

used algorithms. Chapter 5 presented fuzzy logic. It discussed the meaning and basics

of fuzzy theory and its principles such as linguistic variables, FC rules, fuzzification and

defuzification methods. In Chapter 6, we explain in detail the design and implementation

of our fuzzy-based simulation systems. In Chapter 7, we evaluated the performance of

the proposed simulation systems.

In Chapter 8, we present a simulation system and a testbed for IoT device selection,

and compared and evaluate both systems. The main goal of the proposed systems is to find

an IoT device that is more likely to finish a task. To chose the best device many parameters

were considered based on the challenges that devices in an OppNets face. Deployed in

different scenarios with different characteristic each device has different parameters at

a certain moment making them more or less likely to finish a task. To consider as many
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scenarios as possible, we implemented four systems for IoT device selection with different

combinations of parameters.

From the simulation results of IDSS1, we conclude as follows:

• When an IoT device has a higher energy level its importance in the network is

significant so IDSD increases.

• Devices that are closer to the event have more advantage than those further away so

they are more likely to be selected.

• When devices move fast they have better chances of being closer to an event so a

high IDS increases IDSD and their response rate to an emergency situations.

From the simulation results of IDSS2, we found the following results:

• Adding a fourth parameter increases the computational time.

• Considering the architecture of OppNets where nodes have to carry the message

for an undefined amount of time, we added IDST as a new parameter and noticed

that an IoT device with a bigger buffer size will keep the message longer without

dropping it so with IDSD is increased with the increase of IDST.

From the simulation results of IDSS3, we conclude as follows:

• As in IDSS2 we used four input parameters, but added IDWT and IDSC as two new

parameters.

• Since OppNets consist of new devices/ helpers being added constantly, devices with

higher security mechanisms do not compromise the network and are more favor-

able.

• Some IoT devices will wait for a longer time to complete a task so they are more

likely to be selected than others.

For IDSS4, we observed from simulation results that by adding IDNC as a new pa-

rameter, some IoT devices are more central than others and have more connections, so

they are more likely to get selected as they increase the message delivery.

From the evaluation of systems, we saw the effect of different parameters on the se-

lection of an IoT device. Our proposed systems gave us an insight on which devices
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are better than others based on their individual characteristic. We further evaluated our

system by implementing a testbed.

From comparing simulation system INSS1 with the testbed we found that the sim-

ulation results and experimental results are close, but in the experiment there are some

variations.

In the future work, we will consider different parameters combination to evaluate a

wider range of scenarios and we will make extensive simulations to evaluate the proposed

systems.
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