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Abstract

Fitting a curve to a set of data points is a key problem in many applications of science and engineering

such as numerical analysis, robotics and image processing, etc. For solving such a curve-fitting

problem, a natural approach is one with the so-called “spline function” which is a special function

defined by piecewise polynomials. Such a spline approach enables us to yield the simplicity of their

construction, their ease and accuracy of evaluation, and their capacity to approximate complex shapes

through curve-fitting and interactive curve design. In particular, a natural choice from various types

of splines is ‘B-splines’ developed by Schoenberg, in which a spline function has minimal support

with respect to a given degree, smoothness, and domain partition.

This thesis considers a problem of designing curves using B-spline approach. Therein, the curves

are constituted by employing the normalized, uniform B-splines as basis functions. That is, their

knot points are equally-spaced. Then, a sequence of control points of B-splines is called as ‘control

polygon’, which represents the geometrical outline of curves. Such a treatment on the control polygon

is very powerful in the interactive curve design. With respect to the design using such a B-spline

approach, we however see that the design usability may depend on the number of control points on

the curves. For improving such a design usability, a natural way is to represent some given planar

curves as more compact B-spline curves by using only the dominant control points, in which the

desired approximation accuracy is achieved.

Main purpose of thesis is to develop a method for designing such compact B-spline curves by using

only the dominant control points. In particular, such a method is developed for typical two types of

B-spline curves, i.e., “planar B-spline curves” and “periodic B-spline curves”. Then, a central issue

is how we optimally select a dominant control points. For solving such a problem, we here introduce

an optimization approach using dynamic programming (DP) method. That is, the selection problem

is formulated as a graph problem and is solved by dynamic programming. Thus, the method does

not lead to huge amounts of computation time unlike the ordinary approaches - such as trial-and-

error approach, etc. In addition, it is shown that representation using the selected control points can

be realized using NURBS (Non-Uniform Rational B-splines). The proposed methods for the planar

and periodic splines can be applied to the character design using the so-called dynamic font method

and the contour modeling problem for the deformable objects, respectively. The performances are

demonstrated by experimental studies.
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2.2 Cubic Bézier Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The basis function Bi,n(t) for n = 3, 5, and 9. . . . . . . . . . . . . . . . . . . . . . 9
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Chapter 1

Introduction

Curve-fitting is the problem of constructing a curve (i.e., some mathematical function) that has the

best fit to a series of data points, possibly subject to constraints. Such a curve fitting involves either

interpolation or smoothing. Here, the former indicates that an exact fit to the data is required, On

the other hand, the later indicates that a “smooth” function is constructed that approximately fits the

data. The curve-fitting problem to a given set of data may arise in many applications of science and

engineering such as statistics [1], [2], numerical analysis [3]-[5], image processing [6]-[8], robotics

[9]-[12], etc., For example, in [13], the motion planning problem for mechanical systems has been

treated as the curve-fitting problem. For solving such a curve-fitting problem, a natural approach is

one with the so-called “spline function” which is a special function defined by piecewise polynomials.

Such a spline approach enables us to yield the simplicity of their construction, their ease, and accuracy

of evaluation, and their capacity to approximate complex shapes through curve fitting and interactive

curve design. In particular, a natural choice from various types of splines is ‘B-splines’ developed

by Schoenberg [14], and [15], in which a spline function has minimal support with respect to a given

degree, smoothness, and domain partition. Fujioka and Kano have also studied the optimal design

and properties of curves and surfaces by using the B-spline approach (e.g., [16]). Therein, they have

analyzed the convergence properties of interpolating and smoothing splines as the number of data

increases to the infinity [17]. Also, various types of splines - such as planar splines, periodic splines,

and constrained splines, etc. have been developed. In this thesis, we restrict ourselves to the problem

on the planar spline curves and periodic spline curves.

The planar spline curves are curves that can be represented in Cartesian coordinates by a parametric

1



Chapter 1. Introduction 2

equation of the form (x, y) = (x(t), y(t)) for spline curves x(t) and y(t) [18] and [19]. For example,

Bo’s work in [20] has exhibited the fundamental planar curve-fitting problem to unorganized data

points by introducing B-splines. As for its applications, the planar spline curves have been applied

to the geometric modeling problem. Another typical example is described in Morgand’s work [21],

in which planar spline curves are used to predict the shape of specularities by introducing some

planar B-splines. Similar work has been exhibited in Kim’s work [22]. Therein, the planar spline

curves have been used to plan the robotic motion in the geometric environment using some algebraic

algorithms. Also, there is another application which we are very interested. The application is a

design of character font based on the so-called “dynamic font” developed by Takayama and Kano in

[23]. The dynamic font method has been developed by mimicking the writing process by humans, in

which characters are generated by moving a writing device on a writing plane continuously in both

time and space. This method is powerful, particularly when we want to generate and manipulate

characters in Japanese calligraphy where the thickness of the stroke is important. Such a motion is

generated by using normalized uniform B-spline as a basis function. The sequence of control points

of B-splines is called as ‘control polygon’, which represents the geometrical outline of curves. Such a

property leads many advantages to manipulate characters. For example, the operations on characters

- such as resize, translation, rotation, and concatenation, etc. can be defined as operations on control

polygon [24].

On the other hand, the periodic spline curves are curves that repeat its values in regular intervals

or periods using splines [25]. A typical mathematical example of using such periodic spline curves

may be to interpolate or approximate the trigonometric functions, which repeat over intervals of

2π radians. In addition, such periodic spline curves may be used throughout science to describe

oscillations, waves, and other phenomena that exhibit periodicity [26]. Also, Fujioka and Kano’s

group has studied the optimal design of such periodic spline curves by using B-spline approach and

control-theoretic approach and their result has been applied to the contour modeling of wet material

objects - such as jellyfish and red blood cell, etc. [17]. Similar works on periodic spline curves have

been appeared in the field of computer vision such as the idea of matching systems for contour the

human face and head based on periodic curvature in [27].

This thesis considers the problem of designing curves using the B-spline approach. Therein, the

curves are constituted by employing the normalized, uniform B-splines as basis functions. That is,

their knot points are equally-spaced. Then, a sequence of control points of B-splines is called as
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‘control polygon’, which represents the geometrical outline of curves. Such a treatment on the control

polygon is very powerful in the curve design problem. As mentioned above, in the case of dynamic

font using planar spline curves, manipulations on characters can be defined as some operations on

the control polygon. Also, in the case of contour modeling using periodic spline curves, such a

treatment yield an efficient algorithm to understand the deformation motion, etc. More specifically,

the computation on the area and shape complexity can be given by simple functions in terms of control

point vector (i.e., control polygon). With respect to the design using such a B-spline approach, we,

however, see that the design usability depends on the number of control points on the curves. For

improving such design usability and computation speed in the algorithm, a natural way is to represent

a given spline-curves as more compact B-spline curves by using only the dominant control points, in

which the desired approximation accuracy is achieved.

The main purpose of this thesis is to develop a method for designing such compact B-spline curves

by using only the dominant control points. In particular, such a method is developed for typical two

types of B-spline curves i.e., “planar B-spline curves” and “periodic B-spline curves”. Then, a cen-

tral issue is how we optimally select dominant control points. For such an optimal dominant control

point selection, the most typical approach may be the trial-and-error approach exhibited in Lyche

and Mørkens work [28]. Therein, a larger number of control points is initially defined, and then,

certain knot points are greedily removed by employing some heuristic criterion. After removing the

knot points, recomputing the control points is required in order to achieve the desired approxima-

tion accuracy. Similar work is exhibited in Park and Lee’s work [29]. However, it is well-known

that the trial-and-error approaches lead to huge amounts of computation time. On the other hand,

Tjahjowidodo et al. [30] have recently developed a fast algorithm for optimally finding knot points

using the so-called half-split method, where it is limited to the case of cubic splines. The basic idea is

to approximate a subset of the second derivative sample points as a set of piecewise linear functions.

This may be applicable to cases where we want to select dominant control points from original ones.

But, it may be impossible to apply this method when we want to specify the number of dominant

control points, as in the following discussion of this study.

For solving such a selection problem, we here introduce an optimization approach using a dynamic

programming (DP) method. That is, the selection problem is formulated as a graph problem and is

solved by dynamic programming. Thus, the method does not lead to huge amounts of computation

time unlike the ordinary approaches - such as the trial-and-error approach [30]. Then, we have only
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to represent our compact B-spline curves. Since the intervals between their knot points may be non-

uniform, representing dominant control point to our compact B-spline curves is achieved by using

Non-Uniform Rational B-Splines (NURBS). The methods for the planar and periodic splines can

be applied to the character design using the so-called dynamic font method [23] and the contour

modeling problem for the deformable objects [31], respectively. The performances are demonstrated

by experimental studies.

The outline of this thesis is as follows. In Chapter 1, we give the background and the purpose of

this thesis as an introduction. In Chapter 2, we present the spline curve basics including B-spline as

well as Non-Uniform B-splines (NURBS), which will be frequently used throughout this thesis. In

Chapter 3, we present the dynamic programming including a graph theory. In Chapter 4, we develop

the method for designing compact planer B-spline curves and conduct some experimental studies in

order to demonstrate the usefulness and effectiveness of our proposed method. The similar work for

the case of periodic splines are discussed in Chapter 5. In Chapter 6, concluding remarks of this thesis

are given.



Chapter 2

Spline Curve Basics

2.1 Introduction

In this chapter, we present the spline curve basics. In Section 2.2, we present the power basis form

of a curve, which is a common method for expressing polynomial functions. Then, the Bézier curves

are introduced in Section 2.3. In Section 2.4 and 2.5, we present the B-spline curves and NURBS

(Non-Uniform Rational B-spline), which will be used throughout in this thesis.

2.2 Power Basis Form of a Curves

We first present the power basis form for a curves, which is a common method for expressing poly-

nomial functions.

Let x(t) be n-th degree power basis curves, then we have

x(t) =
n∑

i=0

ait
i. (2.1)

Also, this can be written in matrix form as

5



Chapter 2. Spline Curve Basics 6

x(t) = [a0 a1 · · · an]


1

t
...

ti

 = [ai]
T [ui]. (2.2)

Differentiating (2.1) in terms of t may give as

ai =
xi(t)|t=0

i!
, (2.3)

where xi(t)|t=0 is the i-th derivative of x(t) at t = 0. We here call the n + 1 function t’s as the basis

functions. Also, ai’s are called as coefficients of the power basis presentation.

It can be shown that the point x(t) on power basis curves can be computed efficiently by introducing

Horner’s method as follows,

for n = 1, x(t0) = a1t0 + a0

n = 2, x(t0) = (a2t0 + a1)t0 + a0

...

n = n̄, x(t0) = ((· · · (ānt0 + ān−1)t0 + ān−2)t0 + · · ·+ a0

. (2.4)

2.3 Bézier Curves

We next present Bézier curves, which are parametric polynomial curves. Since the power basis form

uses polynomials for the representation of curves, thus the Bézier form is mathematically equivalent

to the power basis form. That is, any curves that can be represented in the Bézier form can be

represented in the power basis forms. However, the Bézier curves have been frequently used in some

software - such as the modeling and drawing tools due to the drawbacks of the power basis forms

(i.e., huge computational cost, etc.).

Now, let Bézier curves of x(t) be the n-th degree is given by
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x(t) =
n∑

i=0

piBi,n(t) 0 ≤ t ≤ 1, (2.5)

where Bi,n(·) denotes the n-th degree Bernstein polynomials given by

Bi,n(t) =
n!

i!(n− i)!
ti(1− t)n−i t ∈ [0, 1]. (2.6)

The coefficients pi are called “control points” that approximate the shape of the curve. Figures 2.1

and 2.2 illustrate design examples of quadratic and cubic Bézier curves, where we note that x(t) is

defined as x(t) = [X(t) Y (t)]T ∈ R2.
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Figure 2.1: Quadratic Bézier Curves.
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Figure 2.2: Cubic Bézier Curves.
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The Bézier curves are invariant under the usual transformations such as rotations and translations, and

others by applies the transformation it to the control polygon. Normally, the choice of basis function

determines the geometric characteristic of the scheme. The properties of basis functionBi,n(t) degree

n (i.e., degree n = 3, 5 and 9 in Figures 2.3) can be summarized as follows,

• Non-negativity : Bi,n(t) ≥ 0, 0 ≤ t ≤ 1.

• Partition of unity :
∑n

i=0Bi,n(t) = 1, 0 ≤ t ≤ 1.

• B0,n(0) = Bn,n(1) = 1.

• Bi,n(t) attains exactly one maximum on the interval [0,1], that is, at t = i
n

.

• Symmetry : for any n, the set of polynomial Bi,n(t) is symmetric with respect to t = 1
2
.

• Recursive definition : Bi,n(t) = (1− t)Bi,n−1(t) + tBi−1,n−1(t); we define Bi,n(t) ≡ 0, if i <

0 or i > n.

• Derivative : B′i,n(t) =
dBi,n(t)

dt
= n(Bi−1,n−1(t)−Bi,n−1(t)) with B−1,n−1(t) ≡ Bn,n−1(t) ≡ 0.

For example, we can calculate Bi,n(t) for the cubic case (i.e., n = 3) as

B0,1(t) = (1− t)B0,0(t) + tB−1,0(t) = 1− t

B1,1(t) = (1− t)B1,0(t) + tB0,0(t) = t

B0,2(t) = (1− t)B0,1(t) + tB−1,1(t) = (1− t)2

B1,2(t) = (1− t)B1,1(t) + tB0,1(t) = 2t(1− t)

B2,2(t) = (1− t)B2,1(t) + tB1,1(t) = t2

B0,3(t) = (1− t)B0,2(t) + tB−1,2(t) = (1− t)3

B1,3(t) = (1− t)B1,2(t) + tB0,2(t) = 3t(1− t)2

B2,3(t) = (1− t)B2,2(t) + tB1,2(t)3t2(1− t)

B3,3(t) = (1− t)B3,2(t) + tB2,2(t)t3

. (2.7)

Using the property of recursive definition and derivative, the general expression on the derivative of a

Bézier curves can be obtained as
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(a) n = 3.
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(b) n = 5.
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(c) n = 9.

Figure 2.3: The basis function Bi,n(t) for n = 3, 5, and 9.
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x′(t) =
n∑

i=0

piB
′
i,n(t)

=
n∑

i=0

pin(Bi−1,n−1(t)−Bi,n−1(t))

= n
n−1∑
i=0

(pi+1 − pi)Bi,n−1(t).

(2.8)

Thus, we obtain formulas for the end derivatives of a Bézier curve as

x′(0) = n(p1 − p0), x′′(0) = n(n− 1)(p0 − 2p1 + p2),

x′(1) = n(pn − pn−1), x′′(1) = n(n− 1)(pn − 2pn−1 + pn−2).
(2.9)

Note here that from (2.8) and (2.9), the derivative of any n-th degree Bézier curve is an (n − 1)-th

degree and the expression for the end of derivative at t = 0, 1 are symmetric.

2.3.1 Rational Bézier Curves

We briefly introduce rational Bézier curves. We here note that this is a particular case of rational

B-spline curves which will be presented in Section 2.4. The Bézier form consists of polynomial, thus

it offers many advantages. However, there exist a number of curve types which can not represented

well by using Bézier form.

Then, a natural way to solve such an issue is to introduce the rational function. The rational Bézier

curves of degree n-th can be defined as

x(t) =

∑n
i=0wipiBi,n(t)∑n
i=0wiBi,n(t)

0 ≤ t ≤ 1, (2.10)

where wi is weight coefficient. We here assume that wi ≥ 0,∀i holds. Then, we can written x(t) in

(2.10) as

x(t) =
n∑

i=0

piRi,n(t) 0 ≤ t ≤ 1, (2.11)
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with

Ri,n(t) =
wiBi,n(t)∑n
j=0wjBj,n(t)

. (2.12)

Here, Ri,n(t) are the rational basis function for the curve form and have the properties of Bi,n(t) as

follows,

• The non-negativity property : Ri,n(t) ≥ 0, 0 ≤ t ≤ 1 for all of i, n.

• Partition of unity property :
∑n

i=0Ri,n(t) = 1, 0 ≤ t ≤ 1.

• R0,n(0) = Rn,n(1) = 1.

• Ri,n(t) attains exactly one maximum on the interval [0, 1].

• When, wi = 1,∀i holds, then we have Ri,n(t) = Bi,n(t),∀i.

• The convex hull property : the curves are contained in the convex hulls of their defining control

points pi.

• The transformation invariance property : rotation and scalings are applied to the curve by ap-

plying them to the control points pi.

• The end point of interpolation : x(0) = p0 and x(1) = pn.

• Spacial case of rational Bézier curves are the polynomial Bézier curves.

Figure 2.4 illustrates two examples of rational Bézier curves x(t) = [X(t) Y (t)]T ∈ R2 for the case

of n = 2 and n = 3 in O−XY plane. For the sake of comparison, Bézier curves in Section 2.3.1 are

also plotted.

2.4 B-spline Curves

We often face the difficulty that curves constituted by just one polynomial or rational segment are

inadequate due to their drawbacks that a high degree may be required in order to satisfy a large

number of constraints. For example, (n− 1)-degree is needed to pass a Bézier curve through a given

set of n data points. In general, such a high degree curves are numerically unstable. For solving such
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(a) Quadratic Bézier curves and Rational Quadratic Bézier curves.
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(b) Cubic Bézier curves and Rational Cubic Bézier curves.

Figure 2.4: Design examples of Bézier curves and Rational Bézier curves.

an issue, a natural way is to introduce the so-called “piecewise polynomial”. As one of the typical

piecewise polynomials, we here present B-spline basis as well as B-spline curves using such a basis

functions.

2.4.1 B-spline Basis Functions

We here define the B-spline basis which is given by a recurrence formula developed by de Boor and

Cox [32, 33]. Let T = t−k, · · · , tm be a nondecreasing sequence of real number as ti ≤ ti+1, i =

−k, · · · ,m−1. Here, ti are called knot. The i-th of B-spline basis function of degree k (order k+ 1),
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denoted by Ni,k and can be defined as

Ni,0(t) =

 1 if ti ≤ t ≤ ti+1

0 otherwise.
, (2.13)

Ni,k(t) =
t− ti
ti+k − ti

Bi,k−1(t) +
ti+k+1 − t
ti+k+1 − ti+1

Bi+1,k−1(t). (2.14)

Here, the critical properties of the B-spline basis functions can be summarized as follows and sample

for B-spline basis functions were shown in Figure 2.5.

• Local support property : Ni,k(t) = 0 if t is outside the interval [ti, ti+k+1).

• In any given knot interval [tj, tj+1), at most k + 1 of the Ni,k(t) (i.e., Nj−k,k, · · · , Nj,k) are

nonzero.

• Non-negativity : Ni,k(t) ≥ 0,∀i, k, and t.

• Partition of unity : it holds that
∑i

j=i−kNj,k(t) = 1,∀t, t ∈ [ti, ti+1).

• Derivatives: all derivatives ofNi,k(t) exist in the interior of a knot interval. Also a knotNi,k(t) is

k− p times continuously differentiable where p is the multiplicity of the knot. Thus, increasing

degree increases continuity and increasing knot multiplicity decreases continuity.

• Except for the case of k = 0, Ni,k(t) attains exactly one maximum value.

Next, we represent the derivative of basis function Ni,k(t). The derivative of a basis function is given

by

N ′i,k(t) =
k

ti+k − ti
Ni,k−1(t)− k

ti+k+1 − ti+1

Ni+1,k−1(t). (2.15)

Using the product rule (fg)′ = f ′g + fg′ in to the basis function in (2.14) as

Ni,k(t) =
t− ti
ti+k − ti

Ni,k−1(t)− ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t),

and then equation we have

N ′i,k(t) =
1

ti+k − ti
Ni,k−1(t) +

t− ti
ti+k − ti

N ′i,k−1(t)

− 1

ti+k+1 − ti+1

Ni+1,k−1 +
ti+k+1 − t
ti+k+1 − ti+1

N ′i+1,k−1(t).
(2.16)
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(a) The non-zero second-degree basis function, T = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.
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(b) Cubic B-spline basis function.

Figure 2.5: An example of B-spline basis functions.

Substituting the equation (2.15) in to (2.16) for N ′i,k−1(t) and N ′i+1,k−1(t) yields

N ′i,k(t) =
1

ti+k − ti
Ni,k−1(t)− 1

ti+k+1 − ti+1

Ni+1,k−1(t)

+
t− ti
ti+k − ti

(
k − 1

ti+k−1 − ti
Ni,k−2(t)− k − 1

ti+k − ti+1

Ni+1,k−2(t))

+
ti+k+1 − t
ti+k+1 − ti+1

(
k − 1

ti+k − ti+1

Ni+1,k−2(t)− k − 1

ti+k+1 − ti+2

Ni+2,k−2(t))

=
1

ti+k − ti
Ni,k−1(t)− 1

ti+k+1 − ti+1

Ni+1,k−1(t) +
k − 1

ti+k − ti
t− ti

ti+k+1 − ti
Ni,k−2(t)

+
k − 1

ti+k − ti+1

(
ti+k+1 − t
ti+k+1 − ti+1

− t− ti
ti+k − ti

)Ni+1,k−2(t)

− k − 1

ti+k+1 − ti+1

ti+k+1 − t
ti+k+1 − ti+2

Ni+2,k−2(t).

(2.17)
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Here, noting that

ti+k+1 − t
ti+k+1 − ti+1

− t− ti
ti+k − ti

= −1 +
ti+k+1 − t
ti+k+1 − ti+1

+ 1− t− ti
ti+k − ti

= −ti+k+1 − ti+1

ti+k+1 − ti+1

+
ti+k+1 − t
ti+k+1 − ti+1

+
ti+k − ti
ti+k − ti

− t− ti
ti+k − ti

=
ti+k − t
ti+k − ti

− t− ti+1

ti+k+1 − ti+1

,

(2.18)

we can get the following expression of N ′i,k(t) by using the deBoor and Cox formula in (2.14).

N ′i,k(t) =
1

ti+k − ti
Ni,k−1(t)− 1

ti+k+1 − ti+1

Ni+1,k−1(t)

+
k − 1

ti+k − ti
Ni,k−1(t)− k − 1

ti+k+1 − ti+1

Ni+1,k−1(t)

=
k

ti+k − ti
Ni,k−1(t)− k

ti+k+1 − ti+1

Ni+1,k−1(t).

(2.19)

In addition, lettingN (l)
i,k(t) be the l-th derivative ofNi,k(t), then it can be shown thatN (l)

i,k(t) is obtained

as

N
(l)
i,k(t) = k(

N
(l−1)
i,k−1(t)

ti+k − ti
−

N
(l−1)
i+1,k−1(t)

ti+k+1 − ti+1

)

=
k

k − l
(
t− ti
ti+k − ti

N
(l)
i,k−1(t) +

ti+k+1 − t
ti+k+1 − ti+1

N
(l)
i+1,k−1(t)),

(2.20)

for l = 0, · · · , l − 1.

2.4.2 B-spline Curves

A k-th degree of B-spline curves x(t) can be define by

x(t) =
m−1∑
i=−k

piNi,k(t) t0 ≤ t ≤ tm, (2.21)

where pi denotes the control points and Ni,k(t) are the k-th degree of B-spline basis functions as in

(2.14) defined on the non-uniform knot vector T as m+ k + 1 knots as

T = {t−k, t−k+1, t−k+2 · · · , tm}. (2.22)
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For the sake of simplicity, we generally assume t0 = 0 and tm = 1 in (2.22). The polygon formed

as a sequence of control points pi is called as “control polygon”. The method for computing a point

on B-spline curves are needed to find the knot interval. In addition, we need to compute the nonzero

basis functions, and multiply the values of the nonzero basis functions with corresponding control

points. The properties of B-spline curves in (2.21) can be listed as follows,

• If n = k and T = {0, · · · , 0, 1, · · · , 1} holds, the curves x(t) is equivalent to Bézier curves.

• The curves x(t) is a piecewise polynomial curves since Ni,k(t) are piecewise polynomial.

• It holds that x(0) = p−1 and x(1) = pm−1, if it hold that p−k = · · · = p−1 and pm−k = · · · =

pm−1.

• Affine invariance : An affine transformation to the curves can be defined as one to control

points.

• Strong convex hull property : the curve x(t) is contained in the convex hell of its control

polygon.

• Local modification scheme : moving pi changes x(t) only in the interval [ti, ti+k+1) since

Ni,k(t) = 0 for t /∈ [ti, ti+k+1).

• The control polygon represents geometrical approximation to the curves.

• Variation diminishing property : no plane has more intersections with the curves than control

polygon.

• The continuity and differentiability of x(t) follow from the Ni,k(t) since x(t) is a linear com-

bination of the Ni,k(t). Thus, it is shown that x(t) is infinitely differentiable in the interior of

knot interval. Also, it is at least k− l times continuously differentiable at a knot of multiplicity

l. This is simply a consequence of the fact that discontinuous functions can be combined when

the result is continuous.

• Multiple (coincident) control points : This follows from property that x(t) is in the convex hull.

More than that, since the knot has multiplicity the curve must be continuous and it has a cusp

(visual discontinuity).
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Figure 2.6: B-spline curves of degree k = 2, 3, 4 and 5 with the control polygons.

Figure 2.6 illustrates design examples of B-spline curves x(t) = [X(t) Y (t)]T ∈ R2 of degree

k = 2, 3, 4 and 5 with control polygons in O −XY plane.

Let x(l)(t) denote the order-th derivative of x(t) for l = 0, · · · , k − 1. Then, we have

x(l)(t) =
m−1∑
i=−k

piN
(l)
i,k(t). (2.23)

Then, from the equation (2.15) and (2.24), we can get as

x′(t) =
m−1∑
i=−k

piN
′
i,k(t)

=
m−1∑
i=−k

pi(
k

ti+k − ti
Ni,k−1(t)− k

ti+k+1 − ti+1

Ni+1,k−1(t))

= (k
m−2∑

i=−k−1

pi+1

ti+k+1 − ti+1

Ni+1,k−1(t))− (k
m−1∑
i=−k

pi
ti+k+1 − ti+1

Ni+1,k−1(t))

= k
p−kN−k,k−1(t)

tk − t0
+ k

m−2∑
i=−k

pi+1 − pi
ti+k+1 − ti+1

Ni+1,k−1(t)− kpnNn+1,k−1(t)

tn+k+1 − tn+1

= k
m−2∑
i=−k

pi+1 − pi
ti+k+1 − ti+1

Ni+1,k−1(t)

=
m−2∑
i=−k

QiNi+1,k−1(t)

, (2.24)
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where

Qi =
pi+1 − pi

ti+k+1 − ti+1

. (2.25)

Then, let T ′ be the knot vector obtained by dropping the first and last knots for T as

T ′ = {0, · · · , 0, t0, · · · , tm−k−1, 1, · · · , 1}. (2.26)

We note that in the (2.26) T ′ has m− 1 knots and the functions Ni+1,k−1(t) that competed on T will

equal to Ni,k−1(t) computed on T ′. Thus

x′(t) =
m−2∑
i=−k

QiNi,k−1(t). (2.27)

Qi is in (2.25), the Ni,k−1(t) are computed on T ′ and x′(t) is (k − 1)-th degree B-spline curve. Also,

the first derivatives at the end point of a B-spline curve are given by

x′(0) = Q0 =
k

tk+1

(p1 − p0)

x′(1) = Qn−1 =
k

1− tm−k−1

(pn − pn−1)

. (2.28)

Also, let x(l)(t) be the k-th derivative of x(t). Then, we have

x(l)(t) =
m−l−1∑
i=−k

p
(l)
i Ni,k−l(t), (2.29)

where p(l)
i , i = −k, · · · ,m− l − 1 is given as

p
(l)
i =

 pi if l = 0

k−l+1
ti+k+1−ti+l

(p
(l−1)
i+1 − p

(l−1)
i ) if l > 0

. (2.30)

2.5 NURBS

We here present Non-Uniform Rational B-Spline curves. A k-th degree Non-Uniform Rational B-

spline (NURBS) curves is defined as

x(t) =

∑m−1
i=−k wipiNi,k(t)∑m−1
i=−k wiNi,k(t)

t0 ≤ t ≤ tm, (2.31)
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where pi denotes the control points (forming a control polygon) and wi are weights. Also, Ni,k(t) are

k-th degree of B-spline basis function in (2.14) defined on non uniform knot vector in (2.22), i.e.,

T = {t−k, t−k+1, · · · , tm−1}. (2.32)

Here, we assume that t0 = 0, tm = 1 and wi > 0,∀i. Let Ri,k(t) be

Ri,k(t) =
wiNi,k(t)∑m−1

j=−k wjNj,k(t)
. (2.33)

Then we rewrite (2.30) as

x(t) =
m−1∑
i=−k

piRi,k(t). (2.34)

Here, Ri,k(t) denotes the rational basis functions. Thus, they are piecewise rational function on

t ∈ [0, 1].

The Ri,k(t) have the properties derived from the equation (2.33) as following list.

• Non-negativity : Ri,k(t) ≥ 0,∀i, k, t ∈ [0, 1].

• Partition of unity :
∑n

i=0Ri,k(t) = 1,∀t ∈ [0, 1].

• R0,k(0) = Rn,k(t) = 1.

• For k > 0, all Ri,k(t) attain exactly one maximum on the interval t ∈ [0, 1].

• Local support : Ri,k(t) = 0 when t /∈ [0, 1]. Moreover, in any given knot span k + 1 of the

Ri,k(t) are nonzero (in general Ri−k,k(t), · · · , Ri,k(t) are nonzero in [ti, ti+1)).

• Derivatives of Ri,k(t) exist in the knot interval. And, it is a rational function with nonzero

denominator. At a knot, Ri,k(t) is k − p times continuously differentiable, where p is the

multiplicity of the knot.

• If it holds that wi = 1,∀i, then Ri,k(t) = Ni,k(t),∀i. Namely, Ni,k(t) are special case of the

Ri,k(t). Also, for ∀a 6= 0, if it holds that wi = a for ∀i, then we have Ri,k(t) = Ni,k(t), ∀i.

• x(0) = p−1 and x(1) = pm−1, if it holds that p−k = · · · = p−1 and pm−k = · · · = pm−1.

• Affine invariance : An affine transformation can be defined as one on the control points.
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• Strong convex hull property : if t ∈ [ti, ti+1), the curves x(t) within the convex hull of the

control points pi−k, · · · , pi for t ∈ [ti, ti+1).

• x(t) is infinitely differentiable on the knot interval. Also, it is k − l times differentiable at a

knot of multiplicity l.

• Variation diminishing property : There is no plane which has more intersections with the curve

than with the control polygon.

• A NURBS curve with no interior knot is equivalent to a rational Bézier curves, since theNi,k(t)

reduce to the Bi,k(t). This means that NURBS curves contain nonrational B-spline and rational

and nonrational Bézier curves as special cases.

• Local approximation : If the control points pi is moved or the weight wi is changed, it affects

only that portion of the curve on the interval t ∈ [ti, ti+k+1).

Property of local approximation is important for interactive shape design. Using NURBS curves, both

control point movement and weight modification can be utilized to attain local shape control. Figures

2.7 and 2.8 illustrate the design example of rational cubic B-splines in O −XY plane and their basis

functions, respectively.
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Figure 2.7: Rational cubic B-spline curves with w3 varying.
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(a) w3 = 1.
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Figure 2.8: The cubic basis functions for the curves in Figure 2.7 with w3 varying.



Chapter 3

Dynamic Programming Approach

3.1 Introduction

In this chapter, we present graph theory [34] and dynamic programming [35], which will be used for

approximate data points throughout in this thesis. In Section 3.2, we briefly present the basic of graph

theory, in which the directed acyclic graph (DAG) is included. Then, the dynamic programming is

introduced in Section 3.3, which will be employed in order to select the dominant control points.

3.2 Graph

3.2.1 General Graph

Graph theory [34] is a study of graph, which has mathematical structures used in order to model

pairwise relations between objects. Such a model involves the ways in which sets of vertices can be

connected by edges.

Let G be a graph which consists of two finite sets V and E. Here, V = {vi} is the set of vertex,

which is a non-empty set of elements. Also, E = {ei} is the edge set which is a possibly empty set of

elements, where each edge ei is assigned as an unordered pair of vertices (vi, vj). Letting |V | and |E|

be order and size of the graph, then they are given as |V | = n and |E| = m respectively for proper n

and m.

22
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We here introduce some terms on the graph:

• Self-loop edge: An edge ei with the same vertex as both of its end vertices (e.g., e2 in Figure

3.1(b)).

• Parallel edge: An edge ei which the more than one edge ej(j 6= i) is associated with a given

pair of vertices (e.g., e5 and e6 in Figure 3.1(b)).

• Simple graph: A graph that has neither self-loops nor parallel edges (Figure 3.1(a)).

• Multi-graph: An ordered pair G = (V,E) with V a set of vertices or nodes and E a multi-set

of unordered pairs of vertices called edges (Figure 3.1(b)).

(a) Simple graph. (b) Multi graph.

Figure 3.1: An example of a simple graph.

• Finte graph: A graph with finite number of vertices and finite number of edges. Otherwise, the

graph is called as ‘infinite graph’.

3.2.2 Directed Graph

We briefly present the ‘directed graph’ (digraph). A directed graph is a set of vertices which are

connected with the order pair of vertices. That is, a directed edge points are connected from the first

vertex to second vertex. In particular, a directed graph or digraph is formed by vertices connected by

directed edges (arcs).

Suppose that we are given a digraph as (V,E), where V is a set of vertices and E is a vertex pairs’

set same as in common graph. The difference is that every elements of E are order pairs, and that
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arcs from vertex vi to the vertex vj can be written as (vi, vj). The other pair (vj, vi) is the opposite

direction arc. Also, we should keep track of the multiplicity of the arcs.

Here, we summarize some notations and properties for the directed graph.

• Let ui and vj be the initial and terminal vertex of the arc (vi, vj). Then, the arc is incident out

of ui and incident into vj .

• The out-degree of the vertex vj is the number of arcs out of it and the in-degree of vj the number

of arcs going into it. They are denoted d+(vj) and d−(vj), respectively.

• In the case of directed walk (trail, path or circuit (i.e., vi0 , ej1 , vi1 , ej2 , · · · , ejk , vik), then vil is

the initial vertex and vil−1
the terminal vertex of the arc ejl .

• Vertices vi and vj are strongly connected if there is a directed vi-vj path and also a directed

vi-vj path in G.

• Digraph G is strongly connected if every pair of vertices is strongly connected.

• A strongly connected component H of the digraph G is a directed subgraph of G such that

H is strongly connected. However, if we add any vertices or arcs to it, then it is not strongly

connected anymore.

The degree of vj is d(vj) = d+(vj) + d−(vj). Then, by Handshaking Lemma in [36], the number of

edge |EG| is given as ∑
vj∈G

d+(vj) = |EG| =
∑
vj∈G

d−(vj). (3.1)

For example, the graph G in Figure 3.2 has

d+(v1) = 2, d−(v1) = 2,

d+(v2) = 2, d−(v2) = 2,

d+(v3) = 2, d−(v3) = 2.

(3.2)

Then, the number of edges of G is given as

∑
vj∈G

d+(vj) =
∑
vj∈G

d−(vj) = |EG| = 6. (3.3)
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Figure 3.2: An example directed graph or digraph.

3.2.3 Directed Acyclic Graph

A directed acyclic graph (DAG) is a finite directed graph with no cycles. Normally, each directed edge

between vertex to another vertex are no way to start at any vertex and follow a consistently-directed

sequence of edges. Also, DAG is a directed graph that has a topological ordering sequence of the

vertices such that every edge is directed from earlier to later in the sequence. Also, DAG can model

many different kinds of information and can also be used as a compact representation of sequence

data, such as the directed acyclic word graph representation of a collection of strings, or the binary

decision diagram representation of sequences of binary choices.

A similar concept for undirected graph is an undirected graph without cycles. However, there are

many other kinds of directed acyclic graph that are not formed by orienting the edges of an undi-

rected acyclic graph. Moreover, every undirected graph has an acyclic orientation, an assignment of

a direction for its edges that makes it into a directed acyclic graph. The DAG are not the same thing

as directed versions of undirected acyclic graph, and some authors call them directed acyclic graph or

acyclic digraph (e.g., [36]), as an example in Figure 3.3.

In an acyclic digraph, there exists at least one source (a vertex whose in-degree is zero) and at least

one sink (a vertex whose out-degree is zero). For proofing, we let G be an acyclic digraph and G has

no arcs. Otherwise, we consider the directed path v0, e1, v1, e2, · · · , ek, vk, which has the maximum

path length k. Since G is acyclic, v0 6= vk. If (v, v0) is an arc, then one of the following is true.
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Figure 3.3: An example of directed acyclic graph (DAG).

• v 6= vt for every value of t = 0, · · · , k as v, (v, v0), v0, e1, v1, e2, · · · , ek, vk is a directed path

with length k + 1.

• v = vt for some value of t and choose the smallest t. Then, t > 0 because there are no loops in

G and v0, e1, v1, e2, · · · , ek, vk, (v, v0), v0 is a directed circuit.

Hence, d−(v0) = 0 and using a similar technique, we can show that d+(vk) = 0 as well.

3.3 Dynamic Programming

We briefly present the ‘Dynamic Programming’ used in the development of optimal control point

selection in Chapters 4 and 5.

Dynamic programming (DP) [35] is a powerful method for solving optimization problems. As in the

computer application, it used to solve many kind of the problems such as curve detection [37], and

deformable object matching [38], etc. The main idea of DP is to decompose a problem from the main

problem into sub-problems, such that we can directly given a solution to the sub-problems. Then, we

can obtain the solution for the main problem by only solving sub-problems, recursively.
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3.3.1 Dynamic Programming Algorithms

Now, let S be a solution of the optimization problem for all of x element and it can be written as

x ∈ S and E denoted the cost function. We then consider m-dimensional search space of the form

S = Lm where L is an arbitrary finite set and we refer to L as a set of labels. Then, the solution of

the optimization problem x ∈ Lm will be written as (x1, · · · , xm) for xi ∈ L.

Suppose that we have a sequence of m elements. Then, we assign a label from L to each element in

the sequence. Let Di represents the minimum total weight of the path from the source x1 to the xi

and γ(xi, xi+1) be a weight of each edge between xi and xi+1. A particularly common class of the

cost functions in computer vision can be written as follows,

E(x1, · · · , xm) =
m∑
i=1

Di(xi) +
m−1∑
i=1

γ(xi, xi+1). (3.4)

This function calculates the cost setting in the label to each element between xi and xi+1.

Normally, L is a subset of R and the pairwise cost can be defined as follows,

γ(xi, xj) = ||xi − xj||p p > 1. (3.5)

In this thesis, we develop dynamic programming algorithms based on the observation, for approxima-

tion and remove some of control points gives approximation. Our algorithms is to find an acceptable

approximation by selecting a points from original ones by using the method of DAG. The detail will

be described in Chapter 4.



Chapter 4

A Design of Compact Planar B-spline Curves

4.1 Introduction

We here particularly focus on the design of characters based on the so-called dynamic font [24] as an

application using the planar B-spline curves. Therein, the characters constituted as a result of planar

trajectory curves using the normalized uniform B-splines as basis functions [41]. That is, their knot

points are equally-spaced. Then, a sequence of control points of B-splines called ‘control polygon’,

which represents the geometrical outline of curves, say characters. Such a treatment on the control

polygon is compelling for manipulating characters. We may readily see that the design may depend

on the number of control points on the characters. If characters can represent as a trajectory curves

using only the dominant control points of original ones, then the design may considerably increase.

For achieving such a design, one of the issues may be to represent a given planar curve as more com-

pact B-spline curves by using only the dominant control points, in which the desired approximation

accuracy is achieved. Therefore, we here develop a method for designing such compact planar B-

spline curves by introducing an idea on optimal control point selection. For such an optimal control

point selection, the most typical approach may be a try-and-error approach exhibited in Lyche’s work

[28]. Therein, the larger number of control points are initially defined, and then certain knot points are

removed by evaluating the error of fitting curves. Similar work has been exhibited in Park’s work [29]

and [42]. However, it is well known that these try-and-error approaches lead to huge computational

time.

28



Chapter 4. A Design of Compact Planar B-spline Curves 29

On the other hand, Tjahjowidodo et al. [30] have recently developed a fast algorithm for optimally

finding knot points using the so-called half split method, where it is limited to cubic splines. The

basic idea is to approximate a subset of the second derivative sample points as a set of piecewise

linear functions. This may be applicable to cases where we want to select dominant control points

from original ones. But, it may be impossible to apply this method when we want to specify the

number of dominant control points, as in the following discussion of this study. The main purpose of

this study is to develop a method for designing compact planar B-spline curves [43], where the results

of the cubic case can be readily extended to ones of arbitrary degrees [44]. In particular, we here

develop a method for selecting the dominant control points by introducing the dynamic programming

(DP) approach [45] and a new idea for knot points selection based on a multi-level error function,

where the term multi-level means that not only function values of a given curve are considered but

also the derivatives. Moreover, it is shown that representation using the selected control points can be

realized using nonuniform rational B-splines (NURBS). We demonstrate the approachs performance

with some experimental studies using handwriting data.

4.2 Problem Statement

We first give a problem statement on the design of compact planar B-spline curves. Now suppose

that we are given a planar curve x(t) = [X(t) Y (t)]T ∈ R2, t ∈ [t0, tm] using normalized uniform

B-spline functions of degree three as the basis functions in Chapter 2,

x(t) =
m−1∑
i=−k

τiB3(α(t− ti)), (4.1)

subject to initial and terminal conditions:

x(t0) = p, x(1)(t0) = x(2)(t0) = 02

x(tm) = q, x(1)(tm) = x(2)(tm) = 02

, (4.2)

where x(l)(·) denotes the l-th derivatives of x(·), p, q ∈ R2 some constant vectors, and 02 = [0 0]T ∈

R2. On the other hand, the initial and terminal conditions in (4.2) are imposed by taking the first and
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last three control points to be hold, i.e.,

τ−3 = τ−2 = τ−1(= p)

τm−3 = τm−2 = τm−1(= q)
. (4.3)

Since x(t) in B-spline functions is a piecewise polynomial, then it can be shown that x(t) at each knot

point ti, i = 0, · · · ,m (i.e., x(ti), i = 0, · · · ,m) and its first and second derivatives (i.e., x(1)(ti) and

x(2)(ti)) are expressed in the case of degree is 3 as follows,

x(ti) =
1

6
(τi−1 + 4τi−2 + τi−3)

x(1)(ti) =
α

2
(τi−1 − τi−3)

x(2)(ti) = α2(τi−1 − 2τi−2 + τi−3)

. (4.4)

Now, let τ ∈ R2×M (M = m + 3) be a matrix consisting of control point τi ∈ R2 (i =

−3,−2, · · · ,m− 1) as

τ = [τ−3 τ−2 · · · τm−1]. (4.5)

Then, a polygonal line in R formed from the sequence of control points τi’s in (4.5) is called as

“control polygon”M, which defined as

M = τ−3 τ−2 · · · τm−1. (4.6)

The control polygonM represents a geometrical outline of the B-spline curves x(t). Such a property

is very convenient when we want to manipulate the planar curves x(t) on rotation, translation, and

resizing [47]. However, the manipulations might depend on the size of τ (i.e., M ). For example, the

above method may cause that M becomes large as we set a significant value to α. Such a case may be

appropriate when we want to edit the shape of characters locally. On the other hand, when we want

to globally manipulate the curves, representing the curves with the small size of τ as possible may be

desirable.

For improving such a problem on global manipulation, a natural idea may be to find some control

points of M , which are dominant on the path of curves x(t). We then consider the following problem.

Problem 1 : Suppose that a control polygonM, or the matrix τ in (4.5), corresponding to the planar

curves x(t) is given. Then, find a set of a specified number of control points (i.e., dominant control
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points) fromM such that the desired approximation accuracy is achieved.

The curves yielded from such dominant control points obtained from Problem 1 will be referred to

compact planar B-spline curves in the sequel.

4.3 Reconstructing Compact Planar B-spline Curves using DP

Control Point Selection

Our main task for solving Problem 1 in the previous section is to develop a method for optimally

selecting a set of dominant control points from the control polygonM on x(t) in (4.1).

In Section 4.3.1, we first present a problem that is based on Hu and Watt’s work in [45]. Therein,

Problem 1 is formulated as graph problem. We then present the algorithm for solving such a graph

problem by employing the dynamic programming. Here, we mainly introduce the so-called multi-

level error functions, where the term multi-level means that not only function values but also its

derivatives will consider. In section 4.3.2, we show how to represent the compact B-spline curves

from the selected control points by introducing Non-Uniform Rational B-splines (NURBS).

4.3.1 Optimal Control Point Selection using Dynamic Programming for Com-

pact Planar B-spline Curves

We first formulate Problem 1 as a graph problem that is based on Hu and Watt’s work in [45].

Let G be a weighted directed acyclic graph (DAG) in Chapter 3. We then construct G from original

control polygon M̂ ∈ RM−4 defined by

M̂ = τ−1 τ0 · · · τm−3, (4.7)

consisting of M − 4 points, which we regard as the main part of the original polygonM as

M =initial M̂final, (4.8)
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with
initial = τ−3 τ−2

final = τm−2 τm−1

, (4.9)

where we note that M̂ instead ofM is used in order to hold the initial and terminal conditions in (4.3)

in the reconstructed compact planar B-splines. Then, letting V (G) and E(G) be the set of vertex and

the set of edge respectively, they are given as V (G) = {vi | − 1 ≤ i ≤ m− 3}

E(G) = {vi, vj) | − 1 ≤ i < j ≤ m− 3}
. (4.10)

Here, vi of V (G) corresponds to the i-th control point, i.e., vi for i = 0, · · · ,m−3, and hence (vi, vj)

of E(G) denotes a polygonal line from τi to τj in M̂. The DAG will be constructed to have a unique

source (a vertex with no inbound edge) and a unique sink (a vertex with no outbound edge). The

source corresponds to the initial point, and the sink corresponds to the final point.

Also, letting γ(vi, vj)(≥ 0) be a weight of each edge between τi and τj , we define γ(vi, vj) by intro-

ducing an idea so-called multi-level error functions as

γ(vi, vj) =
lmax∑
l=0

‖(ti, x(l)(ti))
T − (tj, x

(l)(tj))
T‖2

Λl
, (4.11)

where ||z||2S = zTSz for row vector z, and Λl = diag{λl1, λl2} ∈ R2×2 with λl1, λ
l
2(≥ 0) for l =

0, 1, · · · , lmax(< 3) is a weight matrix to control the balance among the approximations on the each

level of x(l)(t), l = 0, 1, · · · , lmax.

Noting that the multi-level error functions γ(vi, vj) in (4.11) can be expressed in terms of control

points τi using first and second derivatives (i.e., x(1)(ti) and x(2)(ti)) in (4.4). Then, we readily see

that the error functions can be computed in a straightforward manner.

As is well-known, the DAGG is constructed to have a unique source and a unique sink corresponding

to τ−1 and τm−3 respectively. Thus, our task is to find a path on G from the source τ−1 to the sink

τm−3 consisting of K vertices (i.e., dominant control points) with minimum total weight of γ(vi, vj)

in (4.11), where K is preset. It can be shown that such a path exists and can be found by using the

dynamic programming (DP) as follows.

Now, let DK,j be a minimum total weight of the path from the source v0 to vertex vj including K
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vertices. Then, we initially set for the case of K = 2 as

D2,j =

 ∞ if j = −1

γ(v−1, vj) if − 1 < j ≤ m− 3
. (4.12)

For the case of K ≥ 3, we can iteratively compute DK,j as

DK,j =

 minK−2≤i<j{DK−1,i + γ(vi, vj)} if j ≥ K − 1

∞ otherwise
. (4.13)

In order to optimally select K-dominant control points, we thus have only to compute DK,m−3, in

which the minimum cumulative error of multi-level error functions with K-dominant control points

is found. The complete algorithm to select the K-dominant control points is shown in Algorithm 1.

We have presented an algorithm to select a subset of points to optimally approximate compact B-

spline curves. In particular, it is able to find an approximation with a specified number of points and

providing the minimum cumulative error. The algorithm is based on dynamic programming, and it is

independent of the choice of the compatible error function.

Then, letting τ̂ ∈ R2×K be a matrix corresponding to the path computed by the above method using

DP, we get the compressed data as a matrix τ̄ ∈ R2×M̄ with M̄ = k + 4 (< M):

τ̄ = [τ−3 τ−2 τ̂ τm−2 τm−1]. (4.14)

In the sequel, the control polygon corresponding to τ̄ will be refereed as M̄.

4.3.2 Representing Compact Planar B-spline Curves using Non-Uniform Ra-

tional B-splines (NURBS)

We are now in the position to develop a method for representing compact planar B-spline curves using

the selected control polygon M̄, equivalently control point matrix τ̄ in (4.14).

Letting x̄(t) be compact planar B-spline curves defined as

x̄(t) = [X̄(t) Ȳ (t)]T ∈ R2, t ∈ [t0, tm], (4.15)
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Algorithm 1 Selecting the K-dominant control points for compact planar B-spline curve

Input : The control points from given data n(≥ 2)
Input : The specified number of K(2 ≤ K ≤ n)
Output : The indices of the K points

1: begin
2: // The indices of the K points
3: S matrix
4: // The minimum weight table
5: D ← (K + 1)× n matrix
6: // Path
7: P ← (K + 1)× n matrix
8: // Initialization
9: for j ← 1 to n− 1 do

10: D2,j ← γ(v−1, vj)
11: P2,j ← 0
12: end for
13: // Compute the rest of D
14: for m← 3 to K do
15: for j ← m− 1 to n− 1 do
16: min weight←∞
17: for i← m− 2 to j − 1 do
18: weight← Dm−1,i + γ(vi, vj)
19: prior vertex index← 0
20: if weight < min weight then
21: min weight← weight
22: prior vertex index← i
23: end if
24: end for
25: Dm,j ← min weight
26: Pm,j ← prior vertex index
27: end for
28: end for
29: // Restore the Path
30: vertex index← n− 1
31: for i← 0 to K − 1 do
32: S ← S ∪ {vertex index}
33: vertex index← PK−i,vertex index

34: end for
35: return S
36: end



Chapter 4. A Design of Compact Planar B-spline Curves 35

we then consider to represent x̄(t) from the selected control points in (4.14) such that

x̄(t) ≈ x(t), ∀t ∈ [t0, tm]. (4.16)

For the sake of simplicity, we here represent each element of x̄(t) in (4.15), independently. Now, let

t̄i, i = −3,−2, · · · , m̄ − 1 be a knot point corresponding to each control point of τ̄ ∈ RM̄ , where

m̄ = M̄ − 3. Hence, the intervals between such knot points may be non-uniform, we then consider to

represent τ̄ as curves x̄(t), t ∈ [t0, tm] by employing cubic NURBS (see e.g., [49] and [50]) as

x̄(t) =

∑m−1
i=−3wiτ̄iB3(αi(t− t̄i))∑m−1
i=−3wiB3(αi(t− t̄i))

. (4.17)

Here, Bi,k(·) denotes B-splines functions, and it can be computed by algorithm in Chapter 2. Also,

wi(≥ 0) is a weight coefficient with
m−1∑
i=−3

wi = 1. (4.18)

Thus, letting w ∈ RM̄ be a vector of weight wi, i = −3,−2, · · · , m̄− 1 as

w = [w−3 w−2 · · · wm̄−1]T , (4.19)

our task is only to compute a vector w such that x̄(t) ≈ x(t). We then consider the following Problem

2.

Problem 2 : Find w ∈ RM̄ such that

min
w∈RM̄

N∑
i=1

||x(si)− x̄(si)||2, (4.20)

subject to B-spline functions and wi ≥ 0, ∀i.

Here, si ∈ [t0, tm], i = 1, 2, · · · , N denotes a equally spaced sampled point defined as

si = (i− 1)∆s, (4.21)

with ∆s > 0. It can be shown that this problem is written as non-linear programming problem with

equality and inequality linear constraints in terms of w. For solving Problem 2, we here used Matlab

function ‘fmincon’.
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4.4 Experimental Study

We demonstrate the performance of our proposed method by experimental studies. In particular, we

here apply our method to the design of characters based on the dynamic font method.

Now we suppose that we are given planar cubic B-spline curves x(t) and the corresponding control

polygons M for three characters “hello”, “fukuoka” and “welcome” as shown in the Figure 4.1,

respectively. Here, the red dashed lines with circles in the Figure 4.1 (i.e., Figure 4.1 (a)-(c)) were

the control polygonM. These curves x(t) and control polygonM are obtained based on the design

method of a dynamic font for the handwriting (see e.g., [51]). Specifically, a set of handwriting

data (green asterisks in Figure 4.1) is measured by the pen-tablet device and stored in a PC. We then

construct the control polygonM using the theory of smoothing splines [41]. Here, α is set as α = 10.

Hence, the total number of control pointsM and the time interval [t0 tm] are given as Table 4.1.

Using the proposed method in this Chapter, we design compact planar B-spline curves x̄(t) from the

given x(t). In Problem 2, ∆s is set as ∆s = 0.02, and hence N is set as N = 751, 1083, 707 for

the cases of “hello”, “fukuoka” and “welcome”, respectively. Their design examples are illustrated in

Figures 4.2-4.19. Here, lmax in (4.11) is set as lmax = 0, 1 and 2 respectively with Λ0 = I2,Λ1 = 10I2

and Λ2 = 102I2, where I2 ∈ R2×2 denotes an identity matrix.

Also, in each result of Figures 4.2-4.19 are respectively results for the cases where the selected control

point K is set as Table 4.2. In Figures 4.2(a)-4.19(a), the red and blue lines denote the given curves

x(t) and the compact planar B-spline curves x̄(t). The corresponding control polygonsM (red dashed

lines with circle marks) and M̄ (blue dashed lines with cross marks) are plotted in Figures 4.2(b)-

4.19(b). Also, in Figures 4.2(c)-4.19(c), the weights wi computed in Problem 2 are plotted for X and

Y -axes in red and blue lines with square marks, respectively.

From these results, we see that our proposed method relatively works well for the case of lmax = 2. In

the case of lmax = 0, noting that the control polygonM represents the geometrical outline of curves

x(t) in B-spline functions, we see that the control points are selected such that there is a discrepancy

between M and M̂ from using the dynamic programming. Such a selection strategy may often

cause that a linear sequence of control points is unselected intensively (see e.g., Figures 4.2(a), 4.5(a),

4.8(a), 4.11(a), 4.14(a) and 4.17(a)). Then, the knot point interval corresponding to the unselected

control points becomes wider. Hence, representing a compact planar B-spline curve in a class of

cubic NURBS may become difficult only by adjusting the weights wi shown (see e.g., Figures 4.2(c),
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4.5(c), 4.8(c), 4.11(c), 4.4(c) and 4.17(c)). As lmax in (4.11) becomes large, the unselected control

points become scattered as shown in Figures 4.3-4.4, 4.6-4.7 for the case of “hello”, Figures 4.9-4.10,

4.12-4.13 for the case of “fukuoka” and Figures 4.15-4.16, 4.18-4.19 for the case of “welcome”. We

then may observe that the approximation gets better.

On the other hand, as the number of selected control points K (or M̄) becomes small, we obviously

see that the approximation may get worse. We then compute the root mean squared error (RMSE)

defined as

RMSE =

√√√√ 1

N

N∑
i=1

‖x(si)− x̄(si)‖2, (4.22)

for all the case of K, i.e. 0 ≤ K ≤ M − 4 and their results for lmax = 0, 1, 2 are plotted in Figure

4.20. From these results, we observe that the approximations for the case of lmax = 2 are better than

the cases of lmax = 0 and 1, but we cannot avoid that the approximation gets worse as the number of

selected control points K (or M̄) becomes small.

In addition, we here compare the above results with the case where the control points with a specified

number of K are selected randomly. Setting K as K = 138, 196 and 129 for the cases of “hello”,

“fukuoka” and “welcome” respectively, we repeatedly construct the planar B-spline curves x̄(t) 100

times and their results are plotted in Figure 4.21. We see that these results indicate that randomly

selecting the dominant control points often leads to the unstable reconstruction of compact planar

curves. Comparing these results with the results in Figures 4.4, 4.10, and 4.16, it is obvious that our

proposed method is more effective than the cases of random control point selection.
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Table 4.1: The total number of control points M and the time interval [t0, tm] for the cases of
“hello”, “fukuoka” and “welcome”.

Character M [t0, tm]
hello 153 [0, 15]

fukuoka 218 [0, 21.5]
welcome 142 [0, 14]

Table 4.2: Setup on the number of selected control points K (M̄ ) for the results of “hello”,
“fukuoka” and “welcome” in a result for Figures 4.2-4.19.

Character Figure Number K (M̄ )
hello 2–4 K=139 (M̄=143)

5–7 K=121 (M̄=125)
fukuoka 8–10 K=197 (M̄=201)

11–13 K=171 (M̄=175)
welcome 14–16 K=130 (M̄=134)

17–19 K=113 (M̄=117)
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(a) Handwriting data with control polygon for case of “hello”.
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(c) Handwriting data with control polygon for case of “welcome”.

Figure 4.1: Given planar data curves represented on O −XY plane and its control polygonM
with a set of handwriting.
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Figure 4.2: Compact planar B-spline curves for the case of “hello”
with lmax = 0, K = 139 (M̄ = 143).
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Figure 4.3: Compact planar B-spline curves for the case of “hello”
with lmax = 1, K = 139 (M̄ = 143).
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Figure 4.4: Compact planar B-spline curves for the case of “hello”
with lmax = 2, K = 139 (M̄ = 143).
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Figure 4.5: Compact planar B-spline curves for the case of “hello”
with lmax = 0, K = 121 (M̄ = 125).
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Figure 4.6: Compact planar B-spline curves for the case of “hello”
with lmax = 1, K = 121 (M̄ = 125).
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Figure 4.7: Compact planar B-spline curves for the case of “hello”
with lmax = 2, K = 121 (M̄ = 125).
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Figure 4.8: Compact planar B-spline curves for the case of “fukuoka”
with lmax = 0, K = 197 (M̄ = 201).
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Figure 4.9: Compact planar B-spline curves for the case of “fukuoka”
with lmax = 1, K = 197 (M̄ = 201).
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Figure 4.10: Compact planar B-spline curves for the case of “fukuoka”
with lmax = 2, K = 197 (M̄ = 201).
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Figure 4.11: Compact planar B-spline curves for the case of “fukuoka”
with lmax = 0, K = 171 (M̄ = 175)

.
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Figure 4.12: Compact planar B-spline curves for the case of “fukuoka”
with lmax = 1, K = 171 (M̄ = 175).
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Figure 4.13: Compact planar B-spline curves for the case of “fukuoka”
with lmax = 2, K = 171 (M̄ = 175).



Chapter 4. A Design of Compact Planar B-spline Curves 52

0 20 40 60 80 100 120

40

60

80

100

120

140

(a) x̄(t).

0 20 40 60 80 100 120

40

60

80

100

120

140

(b) Selected control polygons M̄.

0 20 40 60 80 100 120

-0.05

0

0.05

0.1

0.15

(c) Weight wi.

Figure 4.14: Compact planar B-spline curves for the case of “welcome”
with lmax = 0, K = 130 (M̄ = 134).
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Figure 4.15: Compact planar B-spline curves for the case of “welcome”
with lmax = 1, K = 130 (M̄ = 134).



Chapter 4. A Design of Compact Planar B-spline Curves 54

0 20 40 60 80 100 120

40

60

80

100

120

140

(a) x̄(t).

0 20 40 60 80 100 120

40

60

80

100

120

140

(b) Selected control polygons M̄.

0 20 40 60 80 100 120

-0.05

0

0.05

0.1

0.15

(c) Weight wi.

Figure 4.16: Compact planar B-spline curves for the case of “welcome”
with lmax = 2, K = 130 (M̄ = 134).
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Figure 4.17: Compact planar B-spline curves for the case of “welcome”
with lmax = 0, K = 113 (M̄ = 117).
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Figure 4.18: Compact planar B-spline curves for the case of “welcome”
with lmax = 1, K = 113 (M̄ = 117).
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Figure 4.19: Compact planar B-spline curves for the case of “welcome”
with lmax = 2, K = 113 (M̄ = 117).
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Figure 4.20: RMSE for all the case of K, lmax = 0, 1 and 2.
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Figure 4.21: Compact planar B-spline curves x̄(t) for the cases of “hello”, “fukuoka”,
and “welcome”, where the control points are randomly selected.



Chapter 5

A Design of Compact Periodic B-splines

Curves

5.1 Introduction

We here focus on the problem of object contour modeling as an application of periodic B-spline

curves. The problem on contour modeling of objects may arise in many fields - such as image pro-

cessing, robotics, and others. Hence, they have been widely studied (e.g., [25], [52]). In their studies,

spline functions have been used frequently, and various techniques-such as snakes and active con-

tour model, have been developed [53]. Fujioka and Kano have also studied such contour modeling

problems using the B-spline approach [26]. Therein, the contour is modeled as a result of periodic

smoothing spline curves using normalized uniform B-splines as basis functions. Then, the knot points

are equally spaced. Also, a sequence of control points of B-splines is called a control polygon, which

represents the geometrical outline of curves (i.e., object contour). In addition, it has been shown

that the computations on area and complexity of contour model are formulated as quadratic functions

in terms of the vector of control points (i.e., control polygon). Thus, such a representation using

a control polygon is very powerful for analyzing deformation of the contour model [31], [17]. In

order to develop faster deformation analysis method on the contour model, our concern is to yield

more compact periodic splines by using only the dominant control points, in which the desired ap-

proximation accuracy is achieved. We here develop a dynamic programming (DP)-based method for

optimally selecting the dominant control points [44] with the idea of multi-level error functions. We

60
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then demonstrate the performance of a problem on object contour modeling.

5.2 Periodic B-spline Curves

Now, we consider to fit a periodic curve x(t) ∈ R, t ∈ [t0, tm] to a set of data sampled from some

function f(t) ∈ R, t ∈ [t0, tm]. Such a periodic curve x(t) is constituted by employing normalized

uniform cubic B-splines B3(·) as the basis functions,

x(t) =
m−1∑
i=−k

τiB3(α(t− ti)), (5.1)

subject to the periodic continuity constraints

x(l)(t0) = x(l)(tm), l = 0, 1, 2. (5.2)

Letting τ ∈ RM (M = m+3) be a vector consisting of “control point” τi ∈ R(i = −3,−2, · · · ,m−

1) as

τ = [τ−3 τ−2 · · · τm−1]T , (5.3)

the periodic curve-fitting problem reduces to find an appropriate vector τ subject to the constraints

(5.3) which are represented using B-splines as

τ−3 = τm−3, τ−2 = τm−2, τ−1 = τm−1. (5.4)

It can been shown that such a τ can be obtained by employing a theory of smoothing splines (see e.g.,

[26] for the detail).

Meanwhile, the sequence of the obtained control points τi’s forms a polygonal line, say control poly-

gonM, defined as

M = τ−3 τ−2 · · · τm−1. (5.5)

The control polygonM represents a geometrical outline of the periodic curve x(t).
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5.3 Reconstructing Compact Periodic B-spline Curves using DP

Control Point Selection

As mentioned in Section 5.1, we here develop a method for reconstructing compact periodic B-spline

curves. As with the case of planar B-spline curves, our main task is to represent a method for optimally

selecting a set of dominant control points from the control polygonM on x(t) in B-spline functions.

We thus develop a method for optimally selecting a set of dominant control points from the control

polygon M in (5.5). Next, we represent the compact periodic B-spline curves from the selected

control points by introducing Non-Uniform Rational B-splines (NURBS). Consequently, we see that

the same scheme for designing compact planar B-spline curves in Chapter 4 can be applied to this

case with constraints (i.e., periodic constrains).

5.3.1 Optimal Control Point Selection using Dynamic Programming for Com-

pact Periodic B-spline Curves

For yielding more compact periodic B-spline curves, we here optimally select M̄ dominant control

points ofM. The control point selection is formulated as a graph problem and be solved by DP as

follows,

Let G be a weighted Directed Acyclic Graphs (DAG). Then, the graph G is constructed from the

control polygon M̂ as

M̂ = τ−1 τ0 · · · τm−3, (5.6)

which consists of M − 4 points. Also, we regard M̂ as the main part of the original polygonM as

M =initial M̂final, (5.7)

with
initial = τ−3 , τ−2

final = τm−2 , τm−1

. (5.8)

Also, let V (G) and E(G) be a set of vertices and edges of graph G as follow in (4.10). Here, vi of

V (G) corresponds to the i-th control point, i.e., τi for i = −1, 0, · · · ,m − 3, and hence an element

(vi, vj) of E(G) denotes a polygonal line from τi to τj in M. Also, letting γ(vi, vj)(≥ 0) be a
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weight of each edge between τi and τj , we here use γ(vi, vj) by introducing the same multi-level error

function in (4.11), i.e.,

γ(vi, vj) =
lmax∑
l=0

‖(ti, x(l)(ti))
T − (tj, x

(l)(tj))
T‖2

Λl
.

Since the DAG G is constructed to have a unique source and a unique sink corresponding to τ−1

and τm−3 respectively, then we have only to find a path on G from the source τ−1 to the sink τm−3

consisting of K vertices (i.e., dominant control points) with minimum total weight of γ(vi, vj), where

K is preset. It can be shown that such a path exists. Thus, the dominant control points can be

optimally selected by using Algorithm 1 in Chapter 4.

Then, letting τ̂ ∈ RK be a vector corresponding to the path computed by DP, we get the control point

vector τ̄ ∈ RM̄(M̄ = K + 4 (< M)) corresponding to compact B-spline curves as

τ̄ = [τ−3 τ−2 τ̂ τm−2 τm−1]T . (5.9)

In the sequel, the control polygon corresponding to τ̄ will be refereed as M̄.

5.3.2 Representing Compact Periodic B-spline Curves using Non-Uniform Ra-

tional B-splines (NURBS)

Now, we have only to represent compact periodic B-spline curves x̄(t) ∈ R, t ∈ [t0, tm] by using τ̄

in (5.9) such that x̄(t) ≈ x(t), ∀t ∈ [t0, tm]. Since the intervals between their knot points may be

non-uniform, representing τ̄ to curves x̄(t), t ∈ [t0, tm] can be achieved by using cubic Non-Uniform

Rational B-Splines (NURBS).

We then consider to represent x̄(t) from the selected control points in (5.9) such that

x̄(t) ≈ x(t), ∀t ∈ [t0, tm]. (5.10)

Let t̄i, i = −3,−2, · · · , m̄− 1 be knot points corresponding to each control point of τ̄ ∈ RM̄ , where

m̄ = M̄ − 3. Since the intervals between such knot points may be non-uniform, we then consider to
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represent τ̄ as curves x̄(t), t ∈ [t0, tm] by employing NURBS in Chapter 2 as

x̄(t) =

∑m−1
i=−3wiτ̄iBk(αi(t− t̄i))∑m−1
i=−3wiBk(αi(t− t̄i))

. (5.11)

Here, t̄i denotes the interval of knot point after using dynamic programming (DP) selected dominant

control points from original. We note that this is a general formula, which is for the case where the

knot points are equally spaced. Also, wi(≥ 0) is a weight coefficient with

m−1∑
i=−3

wi = 1. (5.12)

Thus, letting w ∈ RM̄ be a vector of weight wi, i = −3,−2, · · · , m̄− 1 defined as

w = [w−3 w−3+1 · · · wm̄−1]T , (5.13)

our task is only to compute a vector w such that x̄(t) ≈ x(t). We then consider to find w ∈ RM̄ such

that

min
w∈RM̄

N∑
i=1

||x(si)− x̄(si)||2. (5.14)

Here, si ∈ [t0, tm], i = 1, 2, · · · , N denotes a equally spaced sampled point defined as

si = (i− 1)∆s, (5.15)

with a constant ∆s(> 0). It can be shown that this problem is written as non-linear programming

problem with equality and inequality linear constraints in terms of w. We here used Matlab function

‘fmincon’ for solving this problem.

5.4 Experimental Study

We demonstrate the performance of our proposed method by experimental studies. In particular, we

here apply the proposed method to a problem on object contour modeling. Now, suppose that we

are given a periodic B-spline curve x(t) and the corresponding control polygonsM for a set of data
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sampled from the following periodic function f(t),

f(t) =
√
p2(t) + q2(t), (5.16)

with
p(t) = 3 + r(t) cos(2πt/36),

q(t) = 3 + r(t) sin(2πt/36),
(5.17)

and

r(t) = 2 + sin(10πt/36). (5.18)

Figure 5.1 illustrates the designed periodic curves x(t). Here, the green dashed line with the black

asterisk denotes f(t) with the data. The blue line is the designed periodic B-spline curve x(t). We

then construct a sequence of the original control points for periodic spline curves x(t) by using the

theory of smoothing splines [41]. Here, α is set as α=10. Hence, the total number of control points

M is set as M = 39 and the time interval [t0, tm] are [0, 36]. Using the our proposed method in this
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Figure 5.1: Designed periodic B-spline curve x(t).

chapter, we design the compact periodic B-spline curves x̄(t) from the given curve x(t). Also, ∆s is

set as ∆s = 0.02, and hence N is a set of data. The design examples are illustrated in Figures 5.2-

5.10. Here, lmax in (5.11) is set as lmax = 0, 1 and 2 with Λ0 = I2,Λ1 = 10I2 and Λ2 = 102I2, where

I2 ∈ R2×2 denotes an identity matrix. Also, for each case of Figures 5.2-5.10 were the result setting

as K = 31 (M̄ = 35), K = 29 (M̄ = 33), and K = 25 (M̄ = 29) from original control points. In
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Figures 5.2(a)-5.10(a), the given x(t) and the reconstructed x̄(t) are plotted in the polar coordinate

system O − pq. Here, the red and the blue lines denote the given curves x(t) and the reconstructed

compact periodic B-spline curves x̄(t). Also, green dashed lines with the black asterisk denote f(t)

with data. Also, in Figures 5.2(b)-5.10(b), the weights wi obtained by solving in (5.14) are plotted

in the blue line with square marks. In Figures 5.2(c)-5.10(c) we show that the result of given curve

x(t) and the reconstructed curve x̄(t). Then, the corresponding control polygonsM (red dashed lines

with circle marks) and M̄ (blue dashed lines with cross marks) are plotted in Figures 5.2(d)-5.10(d),

respectively.

From these results, we see that our proposed method relatively works well for the case of lmax = 2. In

the case of lmax = 0, noting that the control polygonM represent the geometrical outline of curves

x(t), we may see that the control points are selected such that a discrepancy betweenM and M̂ by the

dynamic programming. Such a selection strategy may often cause that a linear sequence of control

points is unselected intensively (see e.g., Figures 5.2, 5.5, and 5.8). Then, the knot point interval

corresponding to the unselected control points becomes wider. Hence, representing compact periodic

B-spline curves in a class of cubic NURBS may become difficult only by adjusting the weights wi.

As lmax in (4.11) becomes large, the unselected control points become scattered as shown in Figures

5.3-5.4, 5.6-5.7 and 5.9-5.10. We then may observe that the approximation gets better.

From these results, we observe that the approximations for the case of lmax = 2 are better than the

cases of lmax = 0 and 1, but we cannot avoid that the approximation gets worse as the number of

selected control points K (or M̄) becomes small.

Also, we here compare the above results with the case where the control points with a specified

number of K are selected randomly. Setting K as K = 29 (M̄ = 33) for the cases of contour

model in pq-plane, we repeatedly construct the periodic B-spline curves x̄(t) using the method in this

Chapter one hundred times and their results are plotted in Figure 5.11. We may see that these results

indicate that randomly selecting the dominant control points often leads to the unstable reconstruction

of compact periodic curves. Comparing these results with the results in Figure 5.7, it is obvious that

our proposed method is more effective than the cases of this random control point selection.

The most remarkable thing is that the same scheme as the case of planar B-spline curves in Chapter 4

works well even for the case with periodic constraints.
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi.
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.2: Result of Compact periodic B-spline curves when lmax = 0, K = 31 (M̄ = 35).
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi.
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.3: Result of Compact periodic B-spline curves when lmax = 1, K = 31 (M̄ = 35).
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi.
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.4: Result of Compact periodic B-spline curves when lmax = 2, K = 31 (M̄ = 35).
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi.
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.5: Result of Compact periodic B-spline curves when lmax = 0, K = 29 (M̄ = 33).
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi.
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.6: Result of Compact periodic B-spline curves when lmax = 1, K = 29 (M̄ = 33).
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.7: Result of Compact periodic B-spline curves when lmax = 2, K = 29 (M̄ = 33).
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi.
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.8: Result of Compact periodic B-spline curves when lmax = 0, K = 25 (M̄ = 29).
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi.
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.9: Result of Compact periodic B-spline curves when lmax = 1, K = 25 (M̄ = 29).
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(a) Contour model of the compact periodic B-spline curves x̄(t). (b) Weight wi.
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(c) Compact periodic B-spline curve x̄(t). (d) Selected control polygons M̄.

Figure 5.10: Result of Compact periodic B-spline curves when lmax = 2, K = 25 (M̄ = 29).
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Figure 5.11: Compact periodic B-spline curves x̄(t) for the case where the control points are
randomly selected.



Chapter 6

Concluding Remarks

In this thesis, we considered the problem of designing the compact B-spline curves by using only the

dominant control points. In particular, we here developed such a design method for the typical two

types of B-spline curves “planar B-spline curve” and “periodic B-spline curves”. The central issue

was how to optimally select dominant control points. For such an optimal dominant control point

selection, we here introduced an optimization approach using a dynamic programming (DP) method.

Namely, it was shown that the selection problem is formulated as a graph problem and is solved by

DP. The merit of using the DP approach is to enable us to reduce the amount of computation time

unlike the ordinary approaches- such as the trial-and-error approach exhibited in Lyche and Mørken’s

work [28]. In addition, what made the paper noteworthy was that a new idea of knots selections based

on multi-level error functions is introduced, where the term ‘multi-level’ means that not only function

values of a given curve but also its derivatives are considered. Also, we showed that representation

of compact B-spline curves using the selected control points can be realized using NURBS (Non-

Uniform Rational B-splines) since the allocation of their knot points are generally non-uniform. The

methods for the planar and periodic splines were applied for the character design using the so-called

dynamic font method and the contour modeling problem for the deformable objects, respectively. The

performances were demonstrated by experimental studies.

In Chapter 1, we introduced the background including some related works and the purpose of this

thesis as an introduction.

In Chapter 2, we presented the fundamental theory of spline curves. Therein, the polynomial curves

and Bezier curves, and their properties were presented. Then, we presented B-spline as well as Non-
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Uniform B-splines (NURBS), which were used throughout this thesis.

In Chapter 3, we presented the dynamic programming including basics of graph theory, which are

mainly used in order to solve the problem of selecting dominant control points.

In Chapters 4 and 5, we considered the problem of designing the compact B-spline curves for the two

cases of the planar spline curves and periodic spline curves, respectively. The planar spline curves in

Chapter 4 are curves that are represented as a parametric equation of the form (x, y) = (x(t), y(t))

for curves x(t) and y(t). Then, our main task was to design compact B-spline curves independently

for X and Y directions. In addition, we confirmed such the task was basically similar to the case of

periodic spline curves where we need to impose the periodic constraints. For achieving such tasks,

we developed the method for selecting the dominant control points by employing the DP approach.

Specifically, the directed acyclic graph (DAG) was constituted from the sequence of control points.

Then, the optimal path was found by DP so that some cost function is minimized, and then the domi-

nant control points were obtained as the optimal path corresponding to the control polygon consisting

of dominant control points. Regarding such the cost function, we here introduced the so-called “multi-

level function” that not only function values of a given curve but also its derivatives are considered. In

addition, what is remarkable about the proposed selection method is that the computation complex-

ity is quite low because of the DP-based algorithm. In fact, the complexity to find the K-dominant

control points from M̄ is O(KM̄2) [45]. Then, we showed that the representation of compact planar

B-spline curves is realizable by introducing NURBS. We demonstrated the performance with some

experimental studies. Then, we observed that introducing multi-level error will result in better ap-

proximations of compact planar B-spline curves, although it is unavoidable that the approximations

get worse as the number of selected control points becomes small. Also, we observed through some

experimental studies that random selection of the dominant control points often leads to an unstable

reconstruction of compact spline curves. Thus, it was obvious that our proposed method is more

effective than cases of random control point selection.

For improving the issues on approximation errors, it remains to develop some method for relocating

the knot points corresponding to the selected control points, which is left for a future work. Solving

such the knot points’ relocation is generally not easy, and some strategies have been proposed by

many researchers. In particular, the strategy which we have to develop here may be based on the idea

of “free knots” spline since we could effectively select the dominant control points by our proposed

method. Such the relocation method has been developed by Schwetlick, et al. [56]. Therein, the
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method consists of minimizing some global criterion over both the position of the knots and the

coefficients of the splines. However, what we want to develop may be a method for relocating only

the knot points since we want to hold the outline of the control polygon from the viewpoint of user-

friendliness on curve design. On the other hand, the advantage of using B-splines is the dimensional

extendability. That is, we may extend the results of this thesis to the higher dimensional cases-such

as surface and three-dimensional objects, etc. This will be another future work.



Bibliography

[1] C. F. Martin, S. Sun and M. Egerstedt, Optimal Control, Statistics and Path Planning, Mathemat-

ical and Computer Modeling, Vol.33, No.1–3, pp.237–253, 2001.

[2] H. Ni, Z. Li and H. Song, Moving Least Square Curve and Surface Fitting with Interpolation

Conditions, Proceedings of 2010 International Conference on Computer Application and System

Modeling (ICCASM 2010), pp.300–304, Taiyuan, China, Oct.22-24, 2010.

[3] B. W. Silverman, Some Aspects of The Spline Smoothing Approach to Nonparametric Regression

Curve Fitting with Discussion, Journal of the Royal Statistical Society, Vol.47, No.1, pp.1–52,

1985.

[4] R. Kress, Numerical Analysis, New York : Springer–Verlag, 1998.

[5] X. Zhang and K. K. Mei, Time-Domain Calculation of Microstrip Components and The Curve-

Fitting of Numerical Results, Proceedings of IEEE MTT-S International Microwave Symposium

Digest, pp.313–316, Long Beach, CA, USA, Jun.13-15, 1989.

[6] L. J. Wang, W. S. Hsieh, T. K. Truong, I. S. Reed, T. C. Cheng, A Fast Efficient Computation of

Cubic-Spline Interpolation in Image Codec, IEEE Trans. Signal Process., Vol.49, No.6, pp.1189–

1197, 2001.

[7] O. Faugeras, Three-Dimensional Computer Vision –A Geometric Viewpoint–, Cambridge, MA :

MIT Press, 1996.

[8] N. Ray, A Concave Cost Formulation for Parametric Curve Fitting: Detection of Leukocytes from

Intravital Microscopy Images, Proceedings of 2010 IEEE 17th International Conference on Image

Processing, pp.53–56, Hong Kong, China, Sep.26-29, 2010.

79



BIBLIOGRAPHY 80

[9] K. Takayama and H. Kano, A New Approach to Synthesizing Free Motions of Robotic Manipu-

lators Based on a Concept of Unit Motions, IEEE Transactions on Systems, Man, and Cybernetics,

Vol.25, No.3, pp.453–463, 1995.

[10] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie, Planning Walking

Patterns for a Biped Robot, IEEE Transactions on Robotics and Automation, Vol.17, No.3, pp.280–

289, 2001.

[11] W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, London, U.K. :

Hermes Penton Ltd., 2002.

[12] J. J. Craig, Introduction to Robotics : Mechanics and Control, MA : Addison-Wesley, 1989.

[13] W. L. Xu, B. L. Ma and S. K. Tso, Curve Fitting Approach to Motion Planning of Nonholo-

nomic Chained Systems, Proceedings of 1999 IEEE International Conference on Robotics and

Automation, pp.811–816, Detroit, MI, USA, May.10-15, 1999.

[14] I. J. Schoenberg, Contributions to The Problem of Approximation of Equidistant Data by An-

alytic Functions. Part A–On the Problem of Smoothing or Graduation. A First Class of Analytic

Approximation formulae, Quarterly of Applied Mathematics, Vol.4, No.2, pp.45-99, 1946.

[15] I. J. Schoenberg, Contributions to The Problem of Approximation of Equidistant Data by Ana-

lytic Function: Part B–On The Problem of Osculatory Interpolation. A Second Class of Analytic

Approximation Formulae, Quarterly of Applied Mathematics, Vol.4, No.2, pp.112–141, 1946.

[16] H. Fujioka and H. Kano, Optimal Smoothing Splines for Detecting Extrema from Observational

Data, International Journal of Statistics and Systems, Vol.1, No.2, pp.111–132, 2006.

[17] H. Fujioka and H. Kano, Periodic Smoothing Spline Surface and Its Application to Dynamic

Contour Modeling of Wet Material Objects, IEEE Trans. Systems, Man and Cybernetics, Part A,

Vol.39, No.1, pp.251-261, 2009.

[18] J. G. Dunham, Optimum Uniform Piecewise Linear Approximation of Planar Curves, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, Issue 1, pp.67–75, 1986.

[19] Y. H. Gu, T. Tjahjadi, Efficient Planar Object Tracking and Parameter Estimation Using Com-

pactly Represented Cubic B-spline Curves, IEEE Transactions on Systems, Man, and Cybernetics,

Vol.29, No.4, pp.358–367, 1999.



BIBLIOGRAPHY 81

[20] P. Bo, G. Luo and K. Wang, A Graph-Based Method for Fitting Planar B-spline Curves with

Intersections, Journal of Computational Design and Engineering, Vol.3, Issue 1, pp.14–23, 2016.

[21] A. Morgand, M. Tamaazousti and A. Bartoli, A Geometric Model for Specularity Prediction on

Planar Surfaces with Multiple Light Sources, IEEE Transactions on Visualization and Computer

Graphics, Vol.24, Issue 5, pp.1691–1704, 2018.

[22] K. M. Soo, M. S. Ryong and L. K. Hee Motion Planning with Planar Geometric Models Curves,

Proceedings 1991 IEEE International Conference on Robotics and Automation, pp.1015–1020,

Sacramento, CA, USA, Apr.9–11, 1991.

[23] K. Takayama and H. Kano, Dynamic Font : A New Representational Technology, FSTJ, Vol.32,

No.2, pp.192–202, 1996

[24] H. Nakata and H. Kano, Generation of Japanese Cursive Sentences using Optimal Smoothing

Splines, J.Inform. Process. Soc. Japan, Vol.44, No.1, pp.134–142, 2003.

[25] N. Y. Graham, Smoothing with Periodic Cubic Splines, The Bell System Technical Journal,

Vol.62, Issue 1, pp.101–110, 1983.

[26] H. Kano, H. Fujioka, M. Egestedt and C. F. Martin, Optimal Smoothing Spline Curves and

Contour Synthesis, Proc. the 16th IFAC World Congress, pp.297-302, Prague, Czech Republic,

July 4-8, 2005.

[27] W. XingCe, Z. MingQuan and L. XinYu, An Automatic Matching Method of Object Contour

Curves Based on Periodic Curvature Function, 2006 IEEE International Conference on Robotics

and Biomimetics, pp.1146–1150, Kunming, China, Dec.7–20, 2006

[28] T. Lyche and K. Mørken, Knot Removal for Parametric B-spline Curves and Surfaces, Computer

Aided Geometric Design, Vol.4, Issue 3, pp.217–230, 1987.

[29] H. Park and J. H. Lee, B-spline Curve Fitting Using Dominant Point, Proceedings of Interna-

tional Conference on Computational Science Computational Science–ICCS 2006, Lecture Notes

in Computer Science, Vol. 3992, pp.362–366, May.28-31, 2006.

[30] T. Tjahjowidodo, V. T. Dung, and M. L. Han, A Fast Non-Uniform Knots Placement Method

for B-Spline Fitting, Proceedings of 2015 IEEE International Conference on Advanced Intelligent

Mechatronics (AIM), pp.1490–1495, Busan, South Korea, Jul.7-11, 2015.



BIBLIOGRAPHY 82

[31] H. Kano, H. Fujioka, M. Egerstedt and C. F. Martin. Optimal Smoothing Spline Curves and

Contour Synthesis. 2005 IFAC. 16th Triennial World Congress, Prague, Czech Republic, Vol.38,

Issue 1, pp.297–302, 2005.

[32] C. de Boor, A Practical Guide to Splines, New York : Springer–Verlag, 1978.

[33] C. de Boor, I. J. Schoenberg Selected Papers, New York : Springer–Verlag, 1988.

[34] K. Ruohonen, Graph Theory, Tampere University of Technology, 2013.

[35] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

[36] S. S. Ray, Graph Theory with Algorithms and its Applications, India : Springer–Verlag, 2013.

[37] A. Amini, T. Weymouth and R. Jain, Using Dynamic Programming for Solving Variational

Problems in Vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.2, No.9,

pp.855–867, 1990.

[38] R. Basri, L. Costa, D. Geiger, and D. Jacobs, Determining The Similarity of Deformable Shapes,

Vision Research, Vol.38, Issues 15–16, pp.2365–2385, 1998.

[39] P. F. Felzenszwalb and D. P. Huttenlocher, Distance Transforms of Sampled Functions, Theory

of Computing (ToC), Vol.8, No.19, pp.415–428, 2004.

[40] T. C. Hu and J. D. Morgenthaler, Dynamic Programming and Graph Optimization Problems,

Computers Math. Applic., Vol.27, No.9–10, pp.53–58, 1994.

[41] H. Kano, H. Nakata and C. F. Martin, Optimal Curve Fitting and Smoothing Using Normalized

Uniform B-splines : A Tool for Studying Complex Systems, Applied Mathematics and Computa-

tion, Vol.169, Issue 1, pp.96–128, 2005.

[42] H. Park and J. H. Lee, B-spline Curve Fitting based on Adaptive Refinement using Dominant

points, Computer Aided-Design, Vol.39, pp.439–451, 2007.

[43] R. Soontornvorn and H. Fujioka, Design of Compact Planar B-spline Curves Using DP Control

Point Selection, Proceedings of TENCON 2018 IEEE Region 10 Conference, pp.1476–1479, Jeju,

Korea, Oct.28–31, 2018.

[44] R. Soontornvorn and H. Fujioka, Design of Compact Planar B-spline Curves using DP Con-

trol Point Selection with Multi–level Error Functions- Towards Usability Improvement in Design



BIBLIOGRAPHY 83

of Dynamic Font-based Characters, IEIE Trans. Smart Processing and Computing, Vol.8, No.2,

pp.108–120, 2019.

[45] R. Hu and S. M. Watt, Optimization of Point Selection on Digital Ink Curves, Proceedings of

13th International Conference on Frontiers in Handwriting Recognition, pp.525-530, Bari, Italy,

Sept.18-20, 2012.

[46] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, 1985.

[47] H. Fujioka, H. Kano, H. Nakata and H. Shinoda, Constructing and Reconstructing Characters,

Words and Sentences by Synthesizing Writing Motions, IEEE Transactions on Systems, Man, and

Cybernetics, Vol.36, No.4, pp.661–670, 2006.

[48] M. Hosaka, Modeling of Curves and Surfaces in CAD/CAM, New York : Springer–Verlag, 1992.

[49] L. Piegl and W. Tiller, The NURBS Book, Heidelberg : Springer–Verlag, 1995.

[50] D. F. Rogers, Introduction to NURBS: with Historical Perspective, Academic Press, 2001.

[51] Y. Mieno, H. Fujioka and H. Kano, Data Compression of Digital-Ink with Pen-Slips Using

Multi-level L1 Smoothing Splines, Proceedings of The 2015 IEEE International Conference on

Systems, Man, and Cybernetics, pp.1787–1792, Hong Kong, Oct. 9-12, 2015.

[52] G. Guo, T. Jiang, Y. Wang and W. Gao, Recovering Missing Contours for Occluded Object

Detection, IEEE Signal Processing Letters, Vol.19, Issue 8, pp.463–466, 2012.

[53] A. Blake and M. Isard, Active Contours, London : Springer–Verlag, 1998.

[54] G. Wahba, Spline Models for Observational Data, Philadelphia, PA : Soc. Ind. SIAM, 1990.

[55] O. Valenzuela, M. Pasadas, I. Rojas, A. Guillen and H. Pomares, Automatic Knot Adjustment

for B-spline Smoothing Approximation Using Improved Clustering Algorithm, 2013 IEEE Inter-

national Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad, India, July 7-10, 2013.

[56] H. Schwetlick and T. Schutze, Least Squares Approximation by Splines with Free Knots, BIT

Numerical Mathematics, Vol.35, No.1, pp.361–384, 1995.



Publications

Award

1. 2017 President Award Fukuoka Institute of Technology, October, 2017.

2. 2016 Excellent Presentation Award of the IEEE Fukuoka Section Award Winners, March, 2017.

Journal

1. R. Soontornvorn and H. Fujioka, Design of Compact Planar B-spline Curves Using DP Control

Point Selection with Multi-Level Error Functions - Towards Usability Improvement in De-

sign of Dynamic Font-based Characters, IEIE Transactions on Smart Processing & Computing,

Vol.8, No.2, pp.108-120, 2019.

International Conferences

1. R. Soontornvorn, H. Fujioka and H. Kano, DP-based Control Point Selection of Periodic Splines

and Its Application to Object Contour Modeling, Extended Abstracts of the 51th ISCIE Inter-

national Symposium on Stochastic Systems Theory and Its Applications (SSS’19), pp.23-24,

Aizu-Wakamatsu, Fukushima, Japan, Nov. 1-2, 2019.

2. H. Fujioka, R. Soontornvorn and H. Kano, Constructing Compact Cubic B-spline Curves Using

DP-based Dominant Control Point Selection, Extended Abstracts of the 50th ISCIE Interna-

tional Symposium on Stochastic Systems Theory and Its Applications (SSS ’18), pp.129-130,

Kyoto, Japan, Nov. 1-2, 2018.

84



BIBLIOGRAPHY 85

3. R. Soontornvorn and H. Fujioka, Design of Compact Planar B-spline Curves Using DP Control

Point Selection-Towards Usability Improvement in Design of Dynamic Font-based Characters,

Proc. the 2018 IEEE Region 10 Conference (TENCON2018), pp.1470-1473, Jeju, Korean, Oct.

28-31, 2018.

4. J. Sawangphol, R. Soontornvorn, H. Fujioka, S. Anraku, N. Miyamoto, T. Kato, H. Kino, A.

Hidaka and H. Kano, Toward an Understanding of Nanosheet Object Motion from Noisy Mi-

croscopy Images Using Deep-Learning Approach (invited paper), Abstracts of the 5th Interna-

tional Conference on Nanomechanics and Nanocomposites (ICNN5), pp.89, Fukuoka, Japan,

Aug. 22-25, 2018.

5. H. Fujioka, R. Soontornvorn and H. Kano, Design of Compact B-spline Curves Using Optimal

Control Point Selection, Extended Abstracts of the 49th ISCIE International Symposium on

Stochastic Systems Theory and Its Applications (SSS ’17), pp.43-44, Hiroshima, Japan, Nov.

3-4, 2017.

6. R. Soontornvorn, H. Fujioka, V. Chutchavong and K. Janchitrapongvej, Modeling ECG wave-

form using optimal smoothing Bezier-Bernstein curves, Proc. the 2017 IEEE Region 10 Con-

ference (TENCON2017), pp.1235-1238, Penang, Malaysia, Nov. 5-8, 2017.

Other Conferences

1. R. Soontornvorn and H. Fujioka, DP-based Control Point Selection of Periodic Splines for

Compact Contour Modeling, The 72th Joint Conference of Electrical, Electronics and Informa-

tion Engineers in Kyushu, pp.117, Fukuoka, Japan, Sept. 27-28, 2019.

2. R. Soontornvorn and H. Fujioka, Constructing Compact Planar B-spline Curves Using Dy-

namic Programming-based Control Point Selection, The 71th Joint Conference of Electrical,

Electronics and Information Engineers in Kyushu, pp.253, Oita, Japan, Sept. 27-28, 2018.

3. J. Sawangphol, R. Soontornvorn and H. Fujioka, Design of Hairy Brush Characters Using Con-

volutional Encoder-Decoder Network, The 71th Joint Conference of Electrical, Electronics and

Information Engineers in Kyushu, pp.252, Oita, Japan, Sept. 27-28, 2018.



BIBLIOGRAPHY 86

4. R. Soontornvorn and H. Fujioka, Optimal Modeling of ECG Waveform using Smoothing Bezier-

Bernstein Curves, The 70th Joint Conference of Electrical, Electronics and Information Engi-

neers in Kyushu, pp.198, Okinawa, Japan, Sept. 27-28, 2017.


