福岡工業大学 機関リポジトリ

FITREPO

r

Title	層状ペロブスカイトKCa2Nb3O10から半導体ナノシート液晶の合成
Author(s)	島崎 浩太朗、原田 啓吾、山本 伸也、宮元 展義
Citation	福岡工業大学研究論集 第43巻2号(通巻66号) P123-P128
Issue Date	2011–2
URI	http://hdl.handle.net/11478/1309
Right	
Туре	Departmental Bulletin Paper
Textversion	Publisher

Fukuoka Institute of Technology

 F KCa₂Nb₃O₁₀からの
 半導体ナノシート液晶の合成
 島 崎 浩太朗 (工学研究科生命環境科学専攻)
 原 田 啓 吾 (生命環境科学科)

		-	
山	本	伸	也(生命環境科学科)
宮	元	展	義* (生命環境科学科)

Synthesis of semiconducting nanosheet liquid crystals from a layered perovskite KCa₂Nb₃O₁₀

Kotaro SHIMASAKI (Graduate School of Engineering, Department of Life, Environmental and Materials Science) Keigo HARADA (Department of Life, Environmental and Materials Science) Shinya YAMAMOTO (Department of Life, Environmental and Materials Science)

Nobuyoshi MIYAMOTO* (Department of Life, Environmental and Materials Science)

* To whom correspondence should be addressed.

Abstract

We identified the liquid crystal phase in the aqueous colloid of $Ca_2Nb_3O_{10}^-$ nanosheets, which were synthesized by exfoliation of the smiconducting layered perovskite $KCa_2Nb_3O_{10}$. The nanosheets were obtained in the highest yield when $HCa_2Nb_3O_{10}$ was allowed to react with the exfoliating reagent (tetrabutylammonium; TBA⁺) in the molar ratio of TBA⁺: $HCa_2Nb_3O_{10} = 10$:1, followed by washing the sample for 6 times with water. When the nanosheet colloid (1.7wt%) was observed by crossed polarizers, the interference colors due to permanent birefringence was observed; this observation clearly confirmed the liquid crystallinity of this system. On the other hand, birefringence was not observed in the colloid of 0.4wt.%, indicating that the colloid is isotropic. In this dilute colloid, however, birefringence was temporarily observed when the nanosheet colloid was flowed. The liquid crystalline nanosheet colloid absorbed UV light with the wavelength smaller than 280nm, due to the semiconducting property of the nanosheet with the bandgap of 4.4eV.

Key words: nanosheets, liquid crystal, layered perovskite, semiconductor

1. 緒言

無機層状物質の剝離によって得られる無機ナノシートに 関する研究は,近年目覚ましい発展を遂げている。ナノシー トは1nm程度の厚さと最大数百マイクロメートルの横幅 を有する,アスペクト比が非常に大きいナノ粒子である。 化学的・熱的安定性,電気的特性,磁気的特性,無機有機 ナノ複合体の形成能等の多くの特徴がある¹。そのため,ナ ノシートをボトムアップ型ナノ工学のためのナノ部品とし て用いて、構造の制御された多層薄膜や多孔体を合成する 検討が行われている^{2,3,4}。中でも本研究で用いた HCa_2Nb_3 O_{10} などの層状ペロブスカイト化合物は多彩な組成で合成 可能で⁵,層の厚さが異なる一連の化合物も得ることが出来 る点で特徴的である。半導体性、光触媒性、固体酸触媒性 などの興味深い物性も報告されている^{1,6,7,8,9}。

一方,ナノシートを溶媒に分散した分散液において,その濃度を上昇させることにより,等方相から液晶相に明確 な相転移を示すことが最近明らかにされてきた^{10,11,12}。液晶 は異方的な分子等が配向した液体で,ディスプレイ等に利

-123 -

平成22年10月30日受付

用されるだけでなく様々な機能性材料への応用が検討され ている。現在知られている液晶の大部分は有機物質である が、無機物に基づく液晶では特有の電子物性や化学的安定 性を活かした、より発展的な材料の創製が期待される。し かしながら、現在までに報告されている無機ナノシートの 液晶はいまだ限られている(すべてを列記しても粘土鉱物 (ノントロナイト^{13,14}、フルオロヘクトライト¹⁵、フッ素四 ケイ素雲母¹⁵、バイデライト¹⁶)、アンチモリン酸塩¹⁷、ニオ ブ酸塩^{18,19}、チタン酸塩^{20,21}の7種のみである)。特に、半導 体特性を持つナノシート液晶はこれまでのところ、 $K_4Nb_6O_{17}$ ^{18,19}、 $H_{1.07}Ti_{1.73}O_4$ ²⁰、 HNb_3O_8 ¹⁸、 $HTiNbO_5$ ¹⁸の4 種類しか報告されていない。

そこで本研究では、半導体性を有する層状ペロブスカイ トである HCa₂Nb₃O₁₀を剝離したナノシートを高い収率で 得るための合成条件を検討し、得られたナノシート分散液 が明確な液晶性を示すことを明らかにした。

2. 実験

2.1. 試薬

 $KCa_2Nb_3O_{10}$ の合成およびその酸処理には和光純薬工業 株式会社から購入した炭酸カリウム(特級),炭酸カルシウ ム(特級),酸化ニオブ(特級),硝酸(特級)を用いた。 $HCa_2Nb_3O_{10}$ を剝離させる為の剝離剤として東京化成工業 株式会社製のテトラブチルアンモニウムヒドロキシド (TBAOH;10wt%水溶液)を用いた。

2.2. ナノシートコロイド溶液の合成

既報²²に基づき, $K_2CO_3 \ge CaCO_3 \ge Nb_2O_5 \ge 1.1:2:$ 3のモル比で混合して電気炉 (1200°C, 12時間) で焼成し, $KCa_2Nb_3O_{10} \ge 6 合成した。KCa_2Nb_3O_{10} (10g) \ge 6 硝酸 (5 M,$ 150mL) 中で3日間撹拌し,水で洗浄することで HCa₂Nb₃ $O_{10} \ge 4$ た。得られた HCa₂Nb₃ O_{10} 粉末を TBAOH: HCa₂Nb₃ O_{10} のモル比=1:2 または10:1 となるように 分散させ,室温・4日間または60°C・7日間の条件で撹拌 して反応を行った。その後,遠心分離を利用して未反応の HCa₂Nb₃ O_{10} や余剰な TBAOH の除去を行うことでナノ シート分散液を得た。遠心分離条件等の詳細は結果の項で 述べる。

2.3. キャラクタリゼーション

X線回折分析 (XRD) は株式会社島津製作所製XRD-7000L または日本電子株式会社製 JDX-3530を用いて, CuKα線による測定を行った。pH 測定は HORIBA 製 pH-METER F-22で行った。またナノシート分散液を厚さ1 mmの石英セルに入れ,クロスニコル下での目視観察およ び偏光顕微鏡観察(オリンパス株式会社製 BX51)を行っ た。同様のセルを用いて,紫外可視吸光光度計(株式会社 島津製作所製,UV-3100PC)による測定も行った。

図1 層状ペロブスカイト化合物の XRD パターン:(a) KCa₂Nb₃O₁₀, (b) HCa₂Nb₃O₁₀, (c)遠心分離で得られた沈殿 物。

表1. KCa₂Nb₃O₁₀, HCa₂Nb₃O₁₀の XRD ピークの帰属

KCa ₂ Nb ₃ O ₁₀			HCa ₂ Nb ₃ O ₁₀				
ピーク	2 <i>θ</i>	d	帰属	ピーク	20	d	帰属
番号	/°	/nm	面	番号	/°	/nm	面
1	5.98	1.48	002	1'	6.140	1.44	001
2	12.00	0.74	004	2'	12.24	0.72	002
3	18.02	0.49	006	3'	18.46	0.48	003
4	23.08	0.39	200	4'	23.06	0.39	100
5	24.14	0.37	008	5'	24.68	0.36	004
6	24.72	0.36	203	6'	26.38	0.34	102
7	26.08	0.34	204	7'	29.70	0.30	103
8	27.54	0.32	205	8'	31.06	0.29	005
9	29.44	0.30	206	9'	32.84	0.27	110
10	30.36	0.29	0010	10'	34.08	0.26	111
11	31.36	0.29	207	11'	37.62	0.24	006
12	32.90	0.27	221	12'	38.16	0.24	113
13	33.60	0.27	208	13'	39.16	0.23	105
14	35.88	0.25	0012	14'	44.02	0.21	007
15	41.06	0.22	2011	15'	46.04	0.20	115
16	42.90	0.21	0014	16'	47.10	0.19	200
17	47.06	0.19	2013	17'	49.08	0.19	202
18	49.40	0.18	2014				

3. 結果・考察

3.1. 出発物質の合成と同定

X線回折 (XRD) により,出発物質である KCa₂Nb₃O₁₀ とそのプロトン交換体である HCa₂Nb₃O₁₀の同定を行っ た。KCa₂Nb₃O₁₀と HCa₂Nb₃O₁₀の XRD パターンをそれぞ れ図1a, bに示し,各ピークの位置(2 θ),格子面間隔(d), 帰属面を表1に示す。全てのピークが既報²³と一致してい たことから,KCa₂Nb₃O₁₀および HCa₂Nb₃O₁₀の合成が確 認された。底面間隔は KCa₂Nb₃O₁₀と HCa₂Nb₃O₁₀でそれ ぞれ1.48nm および1.44nm であり, 層間の K+がサイズの 小さい H+と交換したことを示している。

3.2. 剝離条件の検討

まずは、既報22で HCa2Nb3O10が剝離するとされている 条件(TBAOH: $HCa_2Nb_3O_{10}$ のモル比=1:2,室温,4 日間) で反応を行った。しかし,反応後に10000rpm, 20分 の条件で分散液を遠心分離すると、上澄み液は完全に透明 となって固体成分は残存せず、また底部には未剝離の状態 と思われる白色沈殿のみが得られ, ナノシートは得られな かった。遠心分離条件を4000rpm,5分とすると、上澄み液 は少し白濁し, ナノシートが残存したとは推測されたが, この場合でも投入した HCa₂Nb₃O₁₀の多くが未剝離の状態 で沈殿した。粘土鉱物や K₄Nb₆O₁₇の場合, 底部に高濃度の ナノシートを含む粘稠なゾルが得られ、ほぼ100%の収率で 剝離したナノシートが得られる。本系は、これらと比べて 極めて剝離しにくいということがわかる。沈殿物を乾燥し て得られた粉末の XRD 測定(図1(c))を行ったところ, TBA が層間にインターカレートした TBA/Ca₂Nb₃O₁₀層 間化合物に帰属される底面間隔2.54nmのピークととも に、未反応のHCa₂Nb₃O₁₀に帰属される底面間隔1.52nm のピークが現れた。つまり、剝離剤である TBA+が十分に HCa₂Nb₃O₁₀層間に取り込まれていないことが、低いナノ シート収率の原因であると考えられた。

そこで、TBA+と H+との交換率を向上させるために、 TBAOH: HCa₂Nb₃O₁₀のモル比を10:1とし、また、より 反応が進みやすいと思われる条件(60°C,7日間)で反応 を行った。しかし反応後の分散液を遠心分離(15000rpm, 60分)すると、やはりナノシートを含まない透明な上澄み と白色沈殿物とに完全に分離し、ナノシートは得られな かった(図2左)。一般的に、荷電したコロイド粒子は粒子 間の静電反発力によって溶液中で安定に分散して存在して いるが、過剰な塩が存在すると静電反発が遮蔽されて凝集 し沈降することが知られている。本条件では、TBA+による HCa₂Nb₃O₁₀のイオン交換率は増加したのだが、ポリアニ オンであるナノシート間の静電反発力が溶液中に過剰に存 在する TBAOH 塩によって遮蔽されたために、凝集・沈降 したものと考えられた。

したがって,粒子沈降の原因である余剰の TBAOH を除 去すれば再びナノシートが分散した状態が得られるものと 考えられる。そこで遠心分離後の上澄み液を除去し,沈殿 物に純水を加えて再分散させて,再び遠心分離を行った。 この操作を繰り返すことで,余剰な剝離剤(塩)が溶液相 から除去されることを期待した。溶液中の TBAOH 濃度は 溶液の pH と直接的に関連しているので,各プロセスでの TBAOH 濃度を評価するために,pH を測定した。その結果 を表2に示す。反応直後12.82であった pH は操作を繰り返 すと徐々に減少し,12回の処理後では9.37まで低下した。 このことは,溶液中に存在する余剰な TBAOH 濃度が次第 に減少したことを意味している。

TBAOH 除去プロセスにおける遠心分離後の写真を図2 に示す。遠心分離・上澄み除去・再分散を繰り返していく と、4回目からは沈殿と上澄みの間にナノシートが多く含 まれると思われる白濁した液体の層が上層(透明な上澄み 液)と下層(白色沈殿)の間に現れるようになった。この 層は遠心分離5,6回目の時に最も顕著に観察されたが(図 2中央),その後は再び減少に転じ,12回目では再び全てが 沈殿することが分かった(図2右)。

このように、過剰な TBAOH を除去することで、期待通 り、ナノシートの分散がある程度促進された。しかし除去 を進めすぎると逆にナノシート収率が減少するということ が分かった。この原因は、溶液中の TBAOH 濃度減少に伴 いナノシート上の TBA+が再びプロトンと交換してしまっ たためであると考えられる。このように溶液中の TBAOH

図2 遠心分離後の試料の写真。(左):遠心分離1回目, (中央):遠心分離6回目,(右):遠心分離12回目

遠心分離回数	pH 値
1	12.82
2	12.66
3	12.46
4	12.23
5	12.04
6	11.56
7	10.93
8	10.67
9	10.33
10	10.02
11	9.68
12	9.37

表 2	遠心分離後の遠沈管の様子と上澄み液の	pH {	直
-----	--------------------	------	---

図3 ナノシートコロイド溶液のクロスニコル観察(0.4 wt%):(1)動かした直後,(2)10秒後,(3)30秒後,(4)1分後

図 4 ナノシートコロイド溶液 (1.7wt%) のクロスニコル 観察結果。セルの厚さは 1 mm,幅は10mm。

濃度が出来るだけ低くかつ、ナノシート上の TBA+が出来 るだけ多いという最適条件を満たすは困難であるが、本実 験では pH11.56 (遠心分離 6 回)の時がその最適条件で あったと考えることが出来る。いずれにしても,本論文で 行っている方法でTBAOHを剝離剤としてHCa_oNb_oO₁₀ からナノシートを高収率で得ることは、現段階では困難で あった。しかし,層状ニオブ酸化物である K₄Nb₆O₁₇を剝離 させる過程では、過剰な量の剝離剤(プロピルアンモニウ ム)をK₄Nb₆O₁₇と反応させ、その後余剰な遠心分離・上澄 み除去を行うことで、ほぼ100%の収率でナノシートが得ら れることが確認されている。これは、ナノシート表面の疎 水性や表面水酸基の酸性度の違いや、電荷密度の違いなど 多くの要因によるものと考えられる。したがって今後、遠 心分離時間や回数の最適化, TBAOH: HCa₂Nb₃O₁₀のモル 比の最適化する,他の剝離剤の使用,非プロトン性極性溶 媒に分散させるなどの方法によって、

剝離効率を向上でき る可能性はある。

3.3. 液晶性の検討

3.2で述べたようにナノシートを高収率で得ることは難 しかったのだが、以後の実験では TBAOH: $HCa_2Nb_3O_{10}$ モル比=1:2とし $60^{\circ}C$,7日間の条件で反応し、遠心分 離 (15000rpm,60分間)を行った。その後、再び水を加え て再分散・遠心分離(3000rpm,10分間)を行い、白濁した 液体の層のみを採取する方法でナノシート分散液の調製を 行い、得られた分散液を用いて液晶性の検討を行った。

まずは、コロイドの乾燥前後の重量の差を比較すること で得られたナノシート分酸液の濃度を決定した。濃度は0.4 wt%であった。また、仕込み時の HCa₂Nb₃O₁₀重量を考慮す

図5 ナノシートコロイド溶液(1.7wt%)の偏光顕微鏡像

図 6 希薄な Ca₂Nb₃O₁₀-ナノシートコロイド溶液 (8.7×10⁻⁶M) の UV-vis スペクトル

ると、ナノシートの収率は約10%であった。

このナノシートコロイド溶液をクロスニコルによって目 視観察すると、複屈折性は確認されず、ナノシートコロイ ド溶液は等方相であることが分かった。しかし、液に流動 を与えると一時的な複屈折性(流動複屈折性)が現れた(図 3)。このような現象は、ナノシート分散液の濃度が液晶相 転移濃度よりもわずかに低いときに、流動によってナノ シートが一時的に配向することで起こるものである。他の ナノシート分散系でも同様の現象が確認されている^{15,18}。

そこでエバポレーターでナノシートコロイド溶液を1.7 wt%まで濃縮し、その液晶性を再び検討した。濃縮後のナ ノシートコロイド溶液をクロスニコルによって観察する と、定常的な複屈折が明確に確認できた(図4)。さらに、 偏光顕微鏡(クロスニコル下)でも液晶相に特有のテクス チャと干渉色が観察された(図5)。

このようにナノシート濃度が高い場合にのみ定常的な複 屈折を示す液晶相が発現した。この現象はこれまでに報告 された他のナノシート液晶系と同様に,排除体積効果に立 脚する Onsager の理論²⁴によって大まかに説明できる。粒 子濃度が高くなると,異方性粒子の大きな排除体積のため

-126-

に粒子の運動が相互に干渉し、系のエントロピーを損失す る。このとき、系内の粒子の一部が規則的に配列すると、 配列した粒子のエントロピーは低下するが、残余粒子につ いては運動の自由度が回復するのでエントロピーは増大 し、系全体としてはヘルムホルツエネルギーが減少して安 定化される¹。

最後に、希薄な Ca₂Nb₃O₁₀⁻ナノシートコロイド溶液の UV-vis スペクトルを図 6 に示す。280nm 以下(4.4eV 以上) に強い吸収が表れている。この吸収はワイドバンドギャッ プ半導体に特有のものである。270nm での吸光度 A は 0.0568、コロイドのモル濃度 c は8.7×10⁻⁶M、セルの厚さ L は0.1mm であるので、270nm でのモル吸光係数 ε は、 $\varepsilon = A/(cL) = 6.5 \times 10^4 M^{-1} \cdot cm^{-1}$ と算出された。今後、この モル吸光係数を用いることによりナノシートコロイド溶液 の濃度決定が容易になる。

4. 結論

1.7wt.%に濃縮された半導体性の Ca₂Nb₃O₁₀-ナノシートコロイド溶液を調製し,その液晶相発現を同定した。このような半導体ナノシート液晶の報告は,世界で5例目である。無機ナノシート液晶は,異方的な構造,電子物性,化学的安定性など高分子複合体の物性制御等の特徴を活かし発展的な材料の創製が期待されているが,中でも層状ペロブスカイトから得られる無機ナノシート液晶は半導体性・光触媒性・固体酸触媒性等複数の物性を備えており,非常に優れた材料として期待される。ナノシートの組成や厚みを系統的に変化させることも容易であるので,未だ不明の点の多い異方性コロイドのモデル系として,学術的にも重要である。

5.謝辞

本研究の一部は日本板硝子材料工学助成会平成20年度研究助成,日本原子力研究開発機構平成21年度黎明研究課題 助成,コンソーシアム福岡研究助成平成21年度研究助成, 花王芸術・科学財団平成22年度研究助成からの支援により 実施しました。ここに記して感謝いたします。

参考文献

- (1) 黒田一幸,佐々木高義編「無機ナノシートの科学と 応用.」シーエムシー出版,(2005).
- (2) Abe, R., Hara, M., Kondo, J. N., Shinohara, K. D. & Tanaka, A. "Preparation of Ion-Exchangeable Thin Films of Layered Niobate K₄nb₆o₁₇" *Chem. Mater* Vol. 10, pp.1647, (**1998**).
- (3) Miyamoto, N., Kuroda, K. & Ogawa, M. "Exfoliation and Film Preparation of a Layered Titanate,

Na₂ti₃o₇, and Intercalation of Pseudoisocyanine Dye" *J. Mater. Chem.* Vol. 14, pp.165, (**2004**).

- (4) Tanaka, T., Ebina, Y., Takada, K., Kurashima, K. & Sasaki, T. "Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals" *Chem. Mater* Vol. 15, pp.3564, (2003).
- (5) Treacy, M. M. J., Rice, S. B., Jacobson, A. J. & Lewandowski, J. T. "Electron Microscopy Study of Delamination in Dispersions of the Perovskite-Related Layered Phases K[Ca₂na_{n-3}nb_no_{3n+1}]: Evidence for Single-Layer Formation" *Chem. Mater* Vol. 2, pp.279, (1990).
- (6) Ebina, Y., Sasaki, T., Harada, M. & Watanabe, M.
 "Restacked Perovskite Nanosheets and Their Pt-Loaded Materials as Photocatalysts" *Chem. Mater* Vol. 14, pp.4390, (2002).
- (7) Fang, M., Kim, C. H., Saupe, G. B., Kim, H.-N., Waraksa, C. C., Miwa, T., Fujishima, A. & Mallouk, T. E. "Layer-by-Layer Growth and Condensation Reactions of Niobate and Titanoniobate Thin Films" *J. Am. Chem. Soc* Vol. 11, pp.1526, (1999).
- (8) Ebina, Y., Sasaki, T. & Watanabe, M. "Study on Exfoliation of Layered Perovskite-Type Niobates" Solid State Ionics Vol. 151, pp.177, (2002).
- (9) Domen, K., Yoshiura, J., Sekine, T., Tanaka, A. & Ohnishi, T. " *Catal. lett* Vol. 4, pp.852, (1990).
- (10) Nakato, T. & Miyamoto, N. "Liquid Crystalline Behavior and Related Properties of Colloidal Systems of Inorganic Oxide Nanosheets" *Materials* Vol. 2, pp. 1734, (2009).
- (11) 中戸晃之,宮元展義「機能性粘土素材の最新動向: 粘土コロイドが形成する液晶とゲル」pp 299,株式会 社シーエムシー出版,(2010).
- (12) 中戸晃之&宮元展義 "無機ナノシート分散体の液晶 形成と機能" 液晶 Vol. 14, pp.108, (2010).
- (13) Michot, L. J., Bihannic, I., Maddi, S., Funari, S. S., Baravian, C., Levitz, P. & Davidson, P. "Liquid-Crystalline Aqueous Clay Suspensions" *Proc. Natl. Acad. Sci. USA* Vol. 103, pp.16101, (2006).
- (14) Michot, L. J., Bihannic, I., Maddi, S., Baravian, C., Levitz, P. & Davidson, P. "Sol/Gel and Isotropic/ Nematic Transitions in Aqueous Suspensions of Natural Nontronite Clay. Influence of Particle Anisotropy.
 1. Features of the I/N Transition" *Langmuir* Vol. 24, pp.3127, (2008).
- (15) Miyamoto, N., Iijima, H., Ohkubo, H. & Yamauch, Y. "Liquid Crystal Phases in the Aqueous Colloids of Size-Controlled Fluorinated Layered Clay Mineral Nanosheets" *Chem. Commun* Vol. 46, pp.4166, (2010).

- (16) Paineau, E., Antonova, K., Baravian, C., Bihannic, I., Davidson, P., Dozov, I., Impror-Clerc, M., Levitz, P., Madsen, A., Meneau, F. & Michot, L. J. "Liquid-Crystalline Nematic Phase in Aqueous Suspensions of a Disk-Shaped Natural Beidellite Clay" *J. Phys. Chem. B* Vol. 113, pp.15858, (2009).
- (17) Gabriel, J.-C. P., Camerel, F., Lemaire, B. J., Desvaux, H., Davidson, A. & Batail, P. "Swollen Liquid-Crystalline Lamellar Phase Based on Extended Solid-Like Sheets" *Nature* Vol. 413, pp.504, (2001).
- (18) Miyamoto, N. & Nakato, T. "Liquid Crystalline Nanosheet Colloids with Controlled Particle Size Obtained by Exfoliating Single Crystal of Layered Niobate K₄nb₆o₁₇" *J. Phys. Chem.* B Vol. 108, pp.6152, (2004).
- (19) Miyamoto, N. & Nakato, T. "Liquid Crystalline Nature of K₄Nb₆O₁₇ Nanosheet Sols and Their Macroscopic Alignment" *Adv. Mater.* Vol. 14, pp.1267, (2002).
- (20) Nakato, T., Yamashita, Y. & Kuroda, K. "Mesophase of Colloidally Dispersed Nanosheets Prepared by Exfoliation of Layered Titanate and Niobate" *Thin Solid Filims* Vol. 495, pp.24, (2006).
- (21) Nakato, T., Miyamoto, N. & Harada, A. "Stable Liquid Crystalline Phases of Colloidally Dispersed Exfoliated Layered Niobates" *Chem. Commun*, pp.78, (2004).
- (22) Xu, F. F., Ebina, Y., Bando, Y. & Sasaki, T. "Structural Characterization of (TBA, H) Ca₂Nb₃O₁₀ Nanosheets Formed by Delamination of a Precursor-Layered Perovskite" *J. Phys. Chem. B* Vol. 107, pp.9638, (2003).
- (23) Yang-Su, Park, I. & Choy, J.-H. "Exfoliation of Layered Perovskite, KCa₂Nb₃O₁₀, Intocolloidal Nanosheets by a Novel Chemical Process" *J. Mater. Chem.* Vol. 11, (2001).
- (24) Onsager, L. N. Y. Acad. Sci Vol. 51, pp.627, (1949).

-128 -