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Abstract

 

The purpose of the present study is to answer the question:Does the electric resistivity,ρ,approach zero as the
 

applied electric current approaches zero,in the glassy state of the quantized fluxoids in a type 2 superconductor? The
 

best method for answering the above question by experimental studies may be to measure the relaxation process of
 

the induced electric field, , during ultra-long time in the concerning material. This kind of measurements are,

however,very hard to perform,and hence,we tried to answer the above question by a theoretical approach. In this
 

paper,we propose the starting basic equations to investigate the present problem by a theoretical analysis or by
 

numerical calculations,because we have at present no established reliable theoretical formulation for describing the
 

ultra-long time relaxation process in the glassy state.

Keywords:glass,high-temperature superconductor,quantized fluxoids,electro-magnetic property

１.Introduction

 

For the power applications of the superconductors, the
 

type 2 superconducting materials containing a remarkable
 

amount of inhomogeneous substances, called the pinning
 

centers,are usually used. When the magnetic field,higher
 

than the lower critical field, ,is applied to a sample of
 

this kind of materials,the sample becomes the mixed state,

where the quantized fluxoids pass through the sample. For
 

a weakly pinning sample, that contains, e.g., randomly
 

distributing point pins, the quantized fluxoids are in the
 

glassy state at the temperatures lower than so-called the
 

glass-liquid transition temperature［1］. When the electric
 

current with the current density, ,is applied to the sample
 

in this state, the electric field, , is induced due to the
 

motions of the quantized fluxoids.

Fisher et al.［1］predicted theoretically that the electric
 

resistivity,ρ≡ / ,tends toρ 0in the limit of 0in the
 

glassy state of the quantized fluxoids.

In other words, they insisted that the glassy state of
 

superconducting quantized fluxoids becomes“the supercon-

ducting state withρ 0”in the limit of 0.

Their prediction［1］seems, however, to be at variance
 

with the existing common sense for the glassy state:In the
 

glassy state of any kind of particles,the particles are making
 

thermally fluctuating motions at a finite temperature. In
 

the presence of the electric current with current density, ,

having a finite value,therefore,a finite value of the electric
 

field, , is induced, and hence the glassy state has been
 

regarded as a kind of the dissipative state with a finite
 

energy consumption. Since we cannot find any existing
 

example for any dissipative state,whereρapproaches zero
 

as approaches zero,while itself approaches zero as

approaches zero, then their prediction should be re-

examined very carefully.

For this purpose,it may be instructive to mention briefly
 

the background of their theoretical prediction［1］.

The glassy state of quantized fluxoids is a very compli-

cated system, where the assembly of fluxoids, in which
 

fluxoids are interacting with each other, is trapped by the
 

pinning potential resulting from the interaction between the
 

assembly of fluxoids and the assembly of pinning centers.

For the semi-quantitative explanation of the observed
 

electro-magnetic properties in this kind of system,so-called
 

the “collective theory”［2］ has been used, while the
 

phenomenological investigations based on the models［3］

for the detailed behaviors of the assembly of pinning centers
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have been used to explain quantitatively the observed
 

electro-magnetic behavior［4,5］.

Fisher et al.［1］at first predicted theoretically with the
 

aid of the collective theory［2,6］that so-called the glass-

liquid transition will appear as the temperature is raised.

They also predicted that the observed characteristics in the
 

vicinity of this kind of transition are very similar to those
 

for the second order transition,and hence the observed

. curves in the glassy state in the vicinity of the transi-

tion temperature should be scaled to a single master curve.

These theoretical predictions have been confirmed by a
 

tremendous amount of experimental works.

In the derivation of their scaling law for the .

curves,Fisher et al.［1］assumed that the“collective pinning
 

potential”for the assembly of fluxoids, , resulting
 

from the collective interaction between the assembly of
 

fluxoids and the assembly of pinning centers,is given by［6］

＝ 1－ ， (1.1)

where that is called the critical current density and the
 

numerical index,μ,that takes a value in the range of0＜μ

1are the parameters characterizing the collective pinning
 

potential. According to (1.1), the collective pinning
 

potential becomes infinitely deep in the limit of 0.

It is to be mentioned that two types of motions of the
 

assembly of fluxoids can appear in the glassy state of the
 

fluxoids:When the driving force, which is given by the
 

Lorentz-force type expression as ＝ × ［2］for the unit
 

volume of the fluxoid assembly with the flux density of ,

becomes large enough so that the flixoid assembly can move
 

across the pinning potential,then the electric field, ,that
 

is called the flux-flow electric field,is induced by this kind
 

of motion of fluxoid assembly. When the driving force is
 

too small to result in the above-mentioned motion of the
 

fluxoid assembly across the pinning potential,on the other
 

hand,the fluxoid assembly remains inside the valley of the
 

pinning potential,and hence the flux-flow electric field, ,

does not appear. At a finite temperature, however, the
 

fluxoid assembly is making thermal motion inside the valley
 

of the collective pinning potential. Taking account of this
 

kind of thermal motion,too,the fluxoids assembly can move
 

to the direction of the driving force across the pinning
 

potential by thermal hopping after a long time. The elec-

tric field induced by the thermal hopping of the fluxoid
 

assembly is called the flux-creep electric field, . When
 

the value of becomes much smaller than the critical
 

current density, ,therefore,only is observed.

Since the flux-creep electric field, can be estimated
 

theoretically［7］with the aid of the well-known rate theory,

so far as the expression for the pinning potential is given
 

explicitly, it is an easy matter to show that the electric
 

resistivity,ρ,tends toρ 0in the limit of, 0so far as the
 

expression for the collective pinning potential is given by

(1.1).

The above fact clearly indicates that the validity of the
 

above-mentioned theoretical prediction by Fisher et al.［1］

on the asymptotic behavior ofρin the limit of 0depends
 

simply on the fact that(1.1)is valid even at 0or not.

Let us mention two comments on this point.

First, the target of the existing theoretical investigations
 

resulting in the collective theory［2,6］has been confined
 

mainly to the range of the value of near ,and hence the
 

applicability of(1.1)for the smaller values of ,at which
 

only is observed,should be re-examined very carefully
 

by experimental measurements. From this point of view,

we can find only a single paper［8］,in which they reported
 

the observed result that the scaling law predicted by Fisher
 

et al.［1］by using (1.1)breaks only for very small values
 

of the electric current density, .

Secondly,it is to be emphasized that the theory of Fisher
 

et al.［1］cannot explain quantitatively the observed .

curves in the glassy state of quantized fluxoids,but can only
 

describe the shape of the scaled master curve. Yamafuji et
 

al.［5］, on the other hand, showed with the aid of a
 

phenomenological model［3］on the pining characteristics
 

that the observed . curves and also their temperature
 

dependence, reported by many papers［3,4］including the
 

paper［8］,can be explained quantitatively. According to
 

the theory［5］, the corresponding expression to (1.1)for
 

the pinning potential of the assembly of fluxoids for the
 

flux-creep should be given by

＝ 1－
＋δ
＋δ

， (1.2)

for satisfying the requirement that the pinning potential
 

should decrease as the temperature is raised. It is to be
 

noted that the value of δ appearing in their theory［5］is
 

quite small,but is surely measurable.

The above comments indicate that we can at least find an
 

existing experimental result［8］and also a theoretical inves-

tigation［5］,those are against to the theoretical prediction
 

by Fisher et al.［1］, and hence the validity of the latter
 

prediction［1］should be re-examined from a more basic
 

theoretical background than the existing collective theory
 

and also the existing phenomenological pinning models.

The present theoretical investigation for this purpose is
 

expected to give a useful contribution not only on the
 

establishment of the basic physical concept on the glassy
 

state of quantized fluxoids, but also on the theoretical
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formulation for the ultra-long time relaxation process in the
 

glass materials.

２.Starting equations

2.1 Langevin equations for the motion of fluxoids
 

The expression (1.1)for the“collective pinning poten-

tial”for the assembly of fluxoids resulted from a theoretical
 

investigation on the fluxoid assembly that interacts with the
 

assembly of pinning centers. In the present study, there-

fore,let us start from a more basic situation,in which the
 

target of the investigation is not the motion of the fluxoid
 

assembly,but is the motion of each single fluxoid that is
 

interacting with other fluxoids and also with each pinning
 

center in the assembly of pinning centers. Furthermore,the
 

thermally fluctuating vibration of each fluxoid should also
 

be taken into account explicitly.

When each fluxoid moves to the direction of the driving
 

force, it encounters each pinning center successively, and
 

suffers the pinning potential of each pinning center for a
 

single fluxoid. It is to be noted that the pinning potential
 

of each pinning center for a single fluxoid has been known
 

to have some stochastically describable property that is
 

differing from the collective pinning potential. For a
 

weekly pinning sample, for which Fisher et al.［1］inves-

tigated,both of the position of each pinning center and the
 

value of the strength of each pinning force are assumed［1］

to be distributing randomly within respective range. Then
 

the pinning potential of each pinning center for single
 

fluxoid should also have the stochastic nature resulting from
 

the above-mentioned stochastic properties of the pinning
 

centers.

For investigating theoretically a system having some
 

stochastic nature, it is a usual way to start from the Lan-

gevin equation. As the starting equation in this paper,

therefore,let us choose a set of the Langevin equations,each
 

of which describes the motion of each fluxoid.

It is to be emphasized that the present Langevin equations
 

contain three kinds of stochastic characteristics,that is,for
 

the thermal fluctuating force,for the position of the pinning
 

centers, and also for the strength of the pinning force.

However,we have at present no theoretical method to solve
 

exactly this kind of set of three-dimensional Langevin equa-

tions. To make the situation slightly simpler, let us start
 

from a set of the one-dimensional Langevin equations,

because the assembly of fluxoids moves one-dimensionally
 

to the direction of the driving force. The propriety of the
 

present simplification can be checked by comparing the
 

numerically solved results with the observed results for

 

relatively large values of the current density, ,for which the
 

scaling law predicted by Fisher et al.［1］has been con-

firmed by many measurements.

Let us assume that the concerning system is composed of
 

the one-dimensional array of fluxoids and also the
 

one-dimensional array of pinning centers. Then let us
 

denote the position of the -th pinning center by ＝

,where is the spatial coordinate of the concerning
 

type 2 superconducting sample with the range of0＜ ＜∞.

We also denote the position of the -th fluxoid by ＝

； ,where is the time with the range of0 ＜

∞.

The initial position of on the sample before the electric
 

current is applied at ＝0is restricted within the range of

given by －1/2 ＋1/2 ,where is the average
 

interval between successive fluxoids.

Then the Langevin equation for the -th fluxoid can be
 

written in the form of the force balance equation as

Φ ＝η －

－ ， －Ξ . (2.1)

In equation (2.1), the left-hand-side term is the driving
 

force acting on each fluxoid when the electric current with
 

the current density, ,is applied to the sample,whereΦ is
 

the flux quantum. On the other hand, the resistive forces
 

against the driving force acting on the -th fluxoid are listed
 

in the right-hand side:The first term gives the viscous-drag
 

force,whereηis the viscosity coefficient for a single fluxoid,

the second term gives the elastic force due to the attractive
 

interaction with neighboring fluxoids, and the third term
 

gives the pinning force.

In addition,Ξ is the thermal fluctuation force acting
 

on the -th fluxoid,where the stochastic nature ofΞ is
 

characterized by the following expressions:

＜Ξ ＞＝0， (2.2a)

＜Ξ Ξ ′＞＝2η δδ － ′. (2.2b)

In equation (2.2b), is the temperature, is the Boltz-

mann constant,δ is Kronecker’s delta,δ － ′is the delta
 

function,and＜Ξ ＞ represents the average ofΞ in the
 

thermally equilibrium state.

As for the elastic force,to adopt a Hook’spring-type force
 

may be a good approximation,because the deviation of the
 

interval between successive fluxoids, － , from the
 

average interval, ,is known to be small compared with

in the glassy state of the fluoids. Then the elastic-force
 

potential can be approximated by the following expression:

＝∑
2

－ － ， (2.3)
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where is the spring constant.

2.2 Expression for pinning force
 

The most severe hazard for solving the above-mentioned
 

set of Langevin equations is the existence of the pinning
 

force having the doubly stochastic characteristics. We can
 

find no existing work to succeed to solve exactly this type of
 

Langevin equations.

It is to be mentioned that any theoretical prediction
 

breaks when a single experimental example,that is contra-

dicts the prediction, is proposed, so far as the proposed
 

result is agreed upon by everyone. From this point of view,

we have only to choose a specified set of pinning forces
 

enough for realizing a glassy state of fluxoids.

Since the expression for the pinning forces is better to be
 

as simple as possible for solving the equations,let us choose
 

a simple case for the distribution of the position of fluoids,

where only a single pinning center exists in each equilibrium
 

interval of the successive fluxoids in the absence of the
 

pinning centers.

Under the present simplification,the position of the -th
 

pinning center, ,is given by

＝ ＋ ； ＝1，2，…， ＝ ， (2.4a)

where the values of are randomly distributed inside the
 

following range on the sample given by

2 2
－ 1－

2
， (2.4b)

with Lindemann’s criterion constant for the glassy state［8］,

denoted by2 .

In the way of the movement of each fluxoid to the
 

direction of the driving force, the concerning fluxoid
 

encounters the next pinning center successively. Such a
 

situation can be formally expressed by

＝∑ ； ；

； ＝ ∑ ； ； ，(2.5a)

where ； is a kind of box function defined by

； ＝1； ＋1

＝0； . (2.5b)

In equation(2.5a), ； ,which is defined only
 

inside the region of ＋1 ,is the pinning poten-

tial of the -th pinning center that affects the -th fluxoid.

A reasonable requirement on the pinning potential is that
 

all the values of the potential and its spatial derivative and
 

also the second spatial derivative are continuous inside the
 

above region,and also become zero at the both boundaries
 

of this region.

Let us propose an example of the pinning potential

 

satisfying the above requirement as

； ＝－
－ － －

－

×
3 －

－ － ＋2 － －
. (2.5c)

Another requirement on the pinning potential is that the
 

strength of the pinning force should take a random value
 

within a specified range. This requirement can be satisfied
 

by assuming that the coefficient in equation(2.5c)takes
 

a random value inside the range given by

0＜ ， (2.5d)

where and are the pinning parameters characteriz-

ing the strength of pinning forces of the assembly of

pinning centers.

Let us again notice that the three kinds of stochastic
 

characteristics including in the present set of the Langevin
 

equations are specified concretely by equations(2.2a),(2.2

b),(2.4b),and(2.5d),where(2.4b)specifies the range of
 

the random distribution for the position of the pinning
 

centers, and (2.5d) specifies the range of the random
 

distribution for the strength of the pinning forces.

2.3 Normalization of the Langevin equations
 

Since the general solution of the starting equations,

proposed in the present paper as a set of one-dimensional
 

Langevin equations,can hardly be obtained by theoretical
 

analysis, the numerical investigation of these equations
 

seems to be another useful method.

In the present study, therefore, we intend to make the
 

numerical investigation for two kinds of purposes:

Purpose 1:The propriety of the present simplification to
 

start from a set of one-dimensional Langevin equations
 

instead of three-dimensional Langeven equations can be
 

checked by comparing the numerically solved results with
 

the observed results for relatively large values of the current
 

density, ,for which the scaling law predicted by Fisher et
 

al.［1］has been confirmed by many measurements, as
 

mentioned in the section 2.1.

Purpose 2:As the final purpose of the present numerical
 

investigation,we intend to obtain the asymptotic behavior
 

of the induced electric field, ,in the limit of 0. For
 

this purpose, the numerical calculation for the ultra-long
 

time relaxation of the induced electric field, ,is necessary.

In order to carry out the numerical investigations for the
 

above-mentioned purposes, let us at first assume that the
 

concerning glassy state of fluxoids is realized by applying
 

the external magnetic field with the flux density, ,to the
 

sample. Since the magnetic flux of a single fluxoid result-

ing from the rotational motion of the Cooper-pair electrons
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with the electric charge of2 is given by the flux quantum,

Φ＝ /2 with the Planck constant, , then the average
 

interval between successive fluxoids, ,is given by

＝ Φ/ . (2.6a)

Since the largest pinning force among the pinning poten-

tials given by equation (2.5c)with (2.5d) is given by

4 / , any fluxoid can move to the direction of the
 

driving force across the pinning potentials,when the driving
 

force,Φ exceeds the critical value,Φ ,given by

Φ ＝4 / . (2.6b)

Since the effect of the pinning potentials becomes to be
 

disregarded at ≫ , the flux-flow electric resistivity
 

approachesρ,which is independent of ,at ≫ . Thus

ρ has been regarded as one of the measurable physical
 

parameters characterizing the fluxoid system. Taking
 

account of the fact that any fluxoid is moving with the same
 

velocity, , at ≫ , the resistive force against to the
 

driving forceΦ , is only the viscous-drag force given by

η / ＝η . With the aid of the relation given by ＝

＝ρ , then we get

η＝ Φ/ρ. (2.6c)

Now let us define the dimension-less variables by

＝ / ， ＝ / ， (2.7a)

τ＝ / ， (2.7b)

ξτ＝Ξ τ/β；β≡ 2η / /Φ ， (2.7c)

and also define the dimension-less parameters as

≡η/ Φ ， (2.8a)

≡ /Φ ＝ /Φ ， (2.8b)

≡ / ， (2.8c)

≡ / ， (2.8d)

where is the shearing elastic constant［2］of the fluxoid
 

system.

If we divide the Langevin equation given by equation

(2.1)byΦ ,we get the normalized Langevin equation
 

described by the dimension-less variables and dimension-

less parameters as

τ
τ

＝ 2 τ－ τ－ τ

＋ ∑ τ；
τ；
τ

＋βξτ＋ ， (2.9a)

with the aids of the expressions given by

τ； ＝1； τ ＋1，

＝0； ， (2.9b)

； ＝－
－ 1－ －

1－

×
3 1－

1－ － ＋21－ －
. (2.9c)

In the above expressions, and take random values
 

respectively inside the respective ranges,given by

≡ / 1， (2.10a)

2
1
2
－

1－
2

. (2.10b)

It is to be noted that the numerical investigation for the
 

Purpose 1 can be carried out safely by neglecting the ther-

mal fluctuation force given byβξτ,and hence the value
 

of , that is a measure of the time interval appeared in
 

equation (2.7b), can be chosen appropriately. For the
 

numerical investigation for the Purpose 2, on the other
 

hand,we should calculate the relaxation behavior of τ

over ultra-long time interval in the presence of the thermal
 

fluctuating force. Then our hope to choose the value of

as large as possible will be confined to the ratio of to the
 

time scale characterizing the thermal fluctuation of fluxoids.

３.Formal expression for the electric resistivity
 

at

For the convenience of the following theoretical analysis
 

of the set of Langevin equations,(2.9a),let us rewrite it in
 

a simpler form as

τ
τ

＝ ＋

＋βξτ＋ . (3.1)

Let us introduce a probability distribution function,

τ ，τ. Then the Fokker Planck equation corre-

sponding to equation (3.1)is given by

τ
＝ ； (3.2a)

＝ ＋ ； (3.2b)

≡ ∑ β ＋ ； (3.2c)

≡ ＋ ， (3.2d)

≡－ ∑ . (3.2e)

For the purpose to investigate the behavior of the electric
 

resistivity in the limit of 0,we have only to notice the
 

linear response of with respect to . Since is only the
 

operator that depends explicitly on , as can be seen by
 

equation (3.2e), let us at first notice the operator identity
 

given by

expτ ＝expτ

＋ dτ’exp τ－τ’ expτ’ ， (3.3a)

where the electric current with the current density, ≡ ,

is assumed to be applied atτ＝0.

Since the initial distribution of fluxoids atτ＝0should be
 

chosen as the equilibrium distribution in the absence of the
 

applied electric current with the current density, ,then the
 

integral form of the probability distribution function,

τ ，τ,that is abbreviated by τ for simplicity,is
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given by

τ＝ ＋ dτ’expτ’ τ－τ’， (3.3b)

where represents the probability distribution function in
 

the absence of the external current.Thus the stationary state
 

under the presence of is given by

∞ ＝ ＋ dτexpτ ∞ . (3.3c)

If the probability distribution in the stationary state up to
 

the linear response with respect to the external current
 

density, , is denoted by ∞ , the expression for ∞

can be obtained by approximating ∞ on the right-hand
 

side of equation (3.3c)by . Then we get

∞ ＝ ＋ dτexpτ . (3.3d)

Now let us define the averaged position of the fluxoids by

τ
1
∑ τ. (3.4a)

Since the electric field, ,is defined by

τ＝
d
dτ
＜ τ＞

＝ρ
d
dτ
＜ τ＞， (3.4b)

then the electric resistivity,ρ,is defined by

ρ＝ ＝ρ
d
dτ
＜ τ＞. (3.4c)

With the aid of the Fokker Planck equation(3.2a),we get
 

the formal relation:

d
dτ
＜ τ＞＝Π expτ

＝Π expτ . (3.4d)

For the present purpose,we can safely approximate in
 

equation (3.4d)by ∞ given by equation (3.3d).

As for the contribution of ,which is the first term of

∞ , to the normalized velocity,d＜ ＞/dτ, it can be
 

estimated from the following consideration,while its expres-

sion given by(3.4d) looks to be complicated:Since the
 

distribution of fluxoids is kept to be in the equilibrium
 

distribution atτ＝0,the resistive force against to the driving
 

force, is only the viscous drag force, ν. Then any
 

fluxoid as well as the averaged position of fluxoids moves
 

with a constant velocity given byν＝ / . From equa-

tions(3.4c),therefore,the contribution of in(3.4d)to
 

the electric resistivity,ρ,is simply given byρ.

Then the formal expression for the electric resistivity in
 

the stationary state in the limit of 0 is given by

ρ＝ρ

＋ρ dτΠ expτ . (3.5a)

Since the thermal fluctuation force is balanced with the
 

force caused by the total potential, ,defined by equation

(3.2d),for the equilibrium state, ,we can put from(3.3

c)as

β∑ ＋∑ ＝0. (3.5b)

In addition, the following relation for any potential,

,can be derived easily:

∑ ＝ . (3.5c)

With the aids of equations(3.5b),(3.5c),and equation

(3.2d),the expression for the resistivity,ρ,in the stationary
 

state in the limit of 0 is reduced to

ρ＝ρ

－
ρ
β

τΠ expτ － .

(3.5d)

It is to be emphasized that the above expression represents
 

the flux-creep resistivity in the limit of 0, because any
 

operator depending on explicitly is not contained.

Then the general theoretical prediction proposed by
 

Fisher et al.［1］may be concluded to be valid only when the
 

right-hand side of the above expression is proved to be zero,

even for the example of pinning potential that appears in
 

equations(2.9a),(2.9b)and (2.9c).

４.Summary

 

In this paper,we proposed the starting equations for the
 

theoretical investigations on the problem to answer the
 

question:Does the electric resistivity,ρ, approach zero as
 

the applied electric current approaches zero, in the glassy
 

state of the quantized fluxoids in a type 2 superconductor?

The proposed starting equations are given by a set of the
 

Langevin equations,each of which describes the motion of
 

each fluxoid.Since these starting Langevin equations con-

tain three kinds of forces, each of which has a stochastic
 

nature, we further proposed the starting Fokker Planck
 

equation.

With the aid of this Fokker Planck equation,we derived
 

the formal expression for the electric resistivity,ρ, in the
 

limit of the current density, ,of the applied electric current
 

approaches zero.

Since the obtained expression is only the formal expres-

sion,we need further theoretical derivation for the example
 

of the pinning potential given in the sections 2.1 and 2.2.

The result will be reported in the following papers.
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