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ANOTE ON LORENTZIAN METRICS OF 3-DIMENSIONAL
CONFORMALLY FLAT MANIFOLDS

Midori S. GOTO (Department of Computer and Systems Engineering)

Abstract

In a Lorentzian manifold the backwards triangle inequality holds. This fact is confusing to our

intuition. In the study of Lorentzian manifolds, Riemannian metrics are often used. But the relation be-

tween the Lorentzian metrics and the Riemannian metrics are not clear in most cases. In this note we

see that there are examples of Riemannian manifolds the Riemannian metrics of which are closely re-

lated to the Lorentzian metrics defined on them. Specifically, we introduce a Lorentzian metric on a 3-

dimensional pseudo-symmetric space (M, g) of constant type. If M is, furthermore, locally confor-

mally flat, we see that the connection of the Lorentzian metric coincides with the Riemannian connec-

tion of g and hence we have the relations of their curvatures.
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1.INTRODUCTION

As is known, there is a close relation between curva-
ture and topology of a Riemannian manifold. So, in the
study of Riemannian geometry, it is a problem how curva-
tures (local property) determine topological structures of
manifolds. Along the line, many works have been done in
the last century. However, not much are known for
Lorentzian manifolds.

In 1941, S. Myers proved that if the infimum of scalar
curvature of a complete Riemannian manifold is positive,
then the manifold is compact and the fundamental group is
finite. On the other hand, E. Calabi and L. Markus proved,
in 1963, that a Lorentzian spherical space form (i.e., a com-
plete Lorentzian space of positive constant curvature) of di-
mension > 3 is noncompact and the fundamental group is
finite. Hence, as contrast with Riemannian cases, it seems
that unexpected phenomena happen in Lorentzian cases.
The Calabi-Markus phenomena have been studied by T.

FRI7TEI0A 29H 21+

Kobayashi extensively in the viewpoints of discontinuous
groups.

For a constant X, a Riemannian manifold (M, g)
whose curvature tensors R satisfies the identity

R(X,Y))R=x(XAY)'R
for all. tangent vector fields X and Y in M is called a
pseudo- symmetric space of constant type, which has been
investigated by O. Kowalski and many authors, mostly in
1990’s. Here ”+” denotes the derivation on the algebra of
TM induced by endomorphism of the tangent bundle TM
and XAY is the endomorphism of TM defined by
(XAY)Z=9g(Y,Z)X—g(X,Z)Y . Indimension 3, (M,
g) is a pseudo-symmetric space of constant type and is not
of constant curvature if and only if its principal Ricci cur-
vatures satisfy the conditions (up to numeration)
p1=p2 7 p3=2x

everywhere. Let » € M be an arbitrary point. Choose a
sufficiently small neighborhood U of p and the smooth
unit vector field E of eigenvectors of the Ricci operator
corresponding to 03 in U . By taking a double covering if
necessary, we may assume E is a globally defined unit vec-

tor field on M. Then one may define a Lorentzian metric g
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on M as follows: Let E* be the one-form on M defined by
E* (X)= g (E,X) for vector field X. We defineg : =9
—2E* ® E* which is a time-orientable Lorentzian metric
on M. Furthermore, £ becomes timelike, so the resulting
Lorentzian manifold is time-orientable.

In this paper, we study the Lorentzian metric  on a 3-
dimensional pseudo-symmetric space (M, g) of constant
type when M is locally conformally flat, and we see that
the connection of the Lorentzian metric g coincides with
the Riemannian connection of ¢ and compute their curva-
tures.

Our main theorem is, with the above notation, the

following.

Theorem. Let (M, g) be a 3-dimensional connected
pseudo-symmetric space of constant type. Suppose that M
is locally conformally flat and is not of constant curvature.
If the vector field E is globally defined, then the Rieman-
nian connection of (M, g) coincides with the Lorentzian
connection of (M, 7).

We always assume that manifolds are connected and
smooth in this paper. In the next section, we recall basic
notions and notations of pseudo-symmetric spaces of con-
stant type. In the last section, when M is locally confor-
mally flat, we contrast the connections of the Lorentzian

metric and of the Riemannian metric 9.

2. GEOMETRY OF PSEUDO-SYMMETRIC SPACES OF
DIMENSION 3

In this section we recall the theory on 3-dimensional
pseudo-symmetric spases developed by O. Kowalski.
0. Kowalski proved the following:

(2.1) Proposition. Let (M, g) be a 3-dimensional
pseudo-symmetric space of constant type. Then there exists
alocal coordinate system (V ; X, y,t) such that

g=(0')+(0*)*+(w?®)?
where
o!'=fi(xr,y,t)dx
wl=f(x,y,t)dy+k(x,y,t)dx
w3 =dt+h (x,y)dx.
and fife # 0.

Let (M, g) be a 3-dimensional pseudo-symmetric
space of constant type with constant # and € its Ricci op-
erator. Suppose that (M, g) is not of constant curvature.
Then @ has eigenvalues 01, 02 and 03 such that 01 = 02 #
p3=2x. Let(V;x,y,t) bethe local coordinate system as
in Proposition (2.1), and {£1, Ez, E3} the local orthonormal
frame dual to the coframe {® !, w? ®®}. Then Ei,i = 1,2,
3, are vector fields of eigenvectors of the Ricci operator €

corresponding to the eigenvalues ©:, respectively. We have
Ll (pd 0 (50
B~ e (ki )
19
fo 0y
-9
ot

2

E;

and

¢y
fife
[Ei, Es]=aE:1+(b+c)E:
[Ez, Es] = eEz,

[Ey, Ex]=

E1—a’E2+(b-6)E3

wherea =S b = LGy by k()0 =L,

h 2hfe fo
— 1 A r__ c )/ :L R ’
c_waL&( hy+fhk! =k (R)), a ﬁfz(%)’” ki—h(R)}).
The Levi-Civita connection V of (M, g) is given by
- (),
E; 0 f1f2 a\(E:
Ve | Bz |=( (h), 0 E.
B |\ Ak “\Es
a ¢ 0

E 0 a -b\[|E:
Ve|E:|=l—-a 0 —e||E:
E; b e 0 /\Es

E, 0 —b O0\/E:
Ve, | E2 |=| b 0 OJ|E:
Es 0 0 O0/\Es

The last identity implies that the integral curves of the
vector field Es are geodesics, which we call the principal
geodesics as in the literatures.

Recall that R(E;, Ej)Er = Vg Vg Er—VE Ve Ey—
Vig,51Er. When i # j, we denote by K (Ei, E;) the sec-
tional curvature of two-plane section spanned by Ei and
E;:
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9 (R (Ei,Ej)E;, Ei)
(Ei,Ei)g (E;,Ej)—g (Ei, Ej)?-

K(Ei,E/)Zg

(2.2) Proposition. Let (M, g) be a 3-dimensional
pseudo-symmetric space of constant type with constant .
Then
K(E1,Es)=—b (b+2c)—E3(a)—a?

K (Ez,E3)= bz—Eg (e)—ez

K(EvE)=b"—ea—a’—E; (a)~Ez< (22)—( Sfifz)z

(2.3) Corollary. Let (M, g) be as in the proposition.
Suppose b = ¢ = 0. Thenwe have
K(E1,E3): —E3 (a)—a2
K (Ez, E3) =—F;3 (6)*82,
and the 2-plane section spanned by E1, E: is integrable.

(2.4) Remark. Note thatif (M, g) is as in the Propo-
sition (2.2),
01 =K (E1, E2)+K (E\, Es)
02 = K(E1,Ez)+K(E2,E3)
03 =2x =K (E1, E3)+ K (E», E3).
Sc(g)=p1+02+2x=2(p1+x),

where Sc (9) denotes the scalar curvature of (M, g).

3. (LOCALLY) CONFORMALLY FLAT
SPEUDO-SYMMETRIC SPACES

3-dimensional, locally conformally flat pseudo-
symmetric spaces have been studied by Hashimoto and
Sekizawa. We shall quote their results for our later use in
this section.

A Riemannian manifold (M, g) of dimension # is
said to be locally conformally flat if it admits a coordinate
covering {(Vi, ¢:)}, ¢i: Vi = S such that whenever ViN
V; is non-empty and connected, the change of coordinate
map #; ©$;”" is a conformal diffeomorphism from @: (VN
Vi) onto #;(VinV;). Ifn > 3, it follows from the Liou-
ville theorem that #; ©#;"* on ¢: (UiN U;) is the restriction
of aMoebius transformation of S”.

Let (M, g) be locally conformally flat. If the map : :
(Vi,g) = (8", g,) is conformal for each , g is said to be
compatible with the flat conformal structure, and pointwise
proportional to the pull back metric ¢;9,. When# = 3,

(M, g) is locally conformally flat if and only if the tensor
field@ —3Sc (9)1d satisfies the identity

(VxQ) Y= X (Se(9) Y =(V+Q)X—Ly (sc (9))

for every vector fields X and Y on M. Here Id denotes the
identity transformation on the tangent bundle 7M .

Let (M, g) be a 3-dimensional pseudo-symmetric
space of constant type with constant . Suppose (M, g) is
locally conformally flat. Using the above identity and
recalling that QF: = p:E: i = 1,2, 3, we obtain with the
notations as in the previous section:

(01)i+2(p1—2x)a=0,(01),=0
(01)i+2(p1—2x)e=0,kh) =0
felo1)e—k (o1)y—fih (p1);=0,0=0=c.

Hence we see

(3.1) Lemma. Let M be a locally conformally flat 3-
dimensional pseudo-symmetric space of constant type with
constant . Suppose that M is not of constant curvature.
Then it follows that

b=0=canda=e.

Here we note thatif M is as above with constant x # 0,
then the Ricci eigenvalue 01 = 02 of (M, g) different from

©3= 2x is not constant.
4.LORENTZIAN METRICS

Let (M, g) be a 3-dimensional pseudo-symmetric
space of constant type with constant #. Suppose that M is
not of constant curvature and is locally conformally flat.
On (M, g), there is the unit vector field Es corresponding
to the eigenvalue ©s of the Ricci operator € . Taking the
double covering (if necessary), we may assume that the
vector field Es is globally defined. Then we have the
Lorentzian metric g : = g — 2E5*® E3* on M, where Es*
is the one-form on M defined by Es* (X ) = g (E3, X ) for
vector field X. Furthemore, £3 becomes timelike so that
the resulting Lorentzian manifold is time-orientable. For
the local orthonormal frame field {E1, E2, Es} relative to g
taken in the previous section, we have J(E:, E;) =
g (Ei, E;) = 8y fori = 1,2and any 7, but g (Es, E3) = —1.

The Levi-Civita connection V of (M, ) is obfained,

with the notations as in the previous section, as follows:
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E 0 _jgiz)y —a\/(E
Ve | E2 |=| (A), 0 0 E,
E E
o\ A 0 0o/
E: 0 a O0)\/E
VEZ E|=l—-a 0 —el|lE:

Es 0 e O0/\Es

E: 0 0 0\/Ex
Ve |E:|=[0 0 O E:
Es 0 0 0/\Es

We should note that the last identity implies the inte-
gral curves of Es are geodesics with respect to the Lorentz-

ian metric J also. Consequently, we have

(4.1) Proposition. Let (M, §) be the Lorentzian
manifold defined above. Then the integral curves of Es are
geodesics with respect to the metric g as well as 9. More-
over, if we denote by K (Ei, E;) the sectional curvature
with respect to the Lorentzian metric g of the two-plane
section spanned by E: and E;, then

F(E1,E3)= Es (a)+¢12

E(Ez, E3)=Es (e)+62

P (), (GOVAY

K (E\,E:)=—ea—a’—E: (a’)-Ez( i )-( i ) .
Contrasting Propositions (2.2) and (4.1) and using

Lemma 3.1, we have the following relations on curvatures
of (M,g) and (M,7):

4.2) Theorem. Let (M, g) be a 3-dimensional
pseudo-symmetric space of constant type. Suppose M s
locally conformally flat and is not of constant curvature.
If Es is globally defined, then the Riemannian connection
V of (M, g) and the Lorentzian connection V of (M, G)
coincide, but their curvatures satisfy the relation
K (E:, E3)= —F(Ei,E3)f0rl. =1,2.

Moreover; the plane spanned by E1 and E: is parallel

along the principal geodesics and integtable.
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